修士論文

Reduced Order Modeling を用いた原子炉構造材の 放射化量の不確かさ評価及び低減に関する研究

名古屋大学大学院 工学研究科博士課程(前期課程) マテリアル理工学専攻 量子エネルギー工学分野 量子エネルギーシステム工学講座 エネルギー量子制御工学グループ 横井 公洋 平成 30 年 2 月

第1章	序	新計	4	
1.1	背景	及び目的	4	
1.1	.1	廃止措置と放射化	4	
1.1	.2	放射化量評価と不確かさ	5	
1.1.3		Reduced Order Modeling	5	
1.1	.4	不確かさの低減	7	
1.1	.5	本研究の目的	8	
1.2	本論	文の構成	9	
第2章	厉	夏子炉構造材の放射化解析	10	
2.1	本章	[.] の概要	10	
2.2	放射	化解析の概要と流れ	10	
2.3	断面	積の処理	11	
2.3	.1	実効断面積	11	
2.3	.2	等価原理	19	
2.4	離散	座標法を用いた中性子遮へい計算	20	
2.4	.1	中性子輸送方程式の関数展開	20	
2.4	.2	離散座標方程式の導出	24	
2.4	.3	離散座標方程式を用いた数値解法	28	
2.5	本章	のまとめ	35	
第3章	第3章 放射化量の不確かさ定量評価及び低減手法			
3.1	本章	の概要	36	
3.2	従来	の放射化量の不確かさ評価手法	36	
3.2	.1	代表的な不確かさ評価手法の概要	36	
3.2	.2	ランダムサンプリング法		
•	3.2.2.1	ランダムサンプリング法を用いた不確かさ評価の流れ		
•	3.2.2.2	多変量正規乱数の生成	38	
•	3.2.2.3	断面積の摂動	41	
•	3.2.2.4	摂動因子の合成	42	
3.2	.3	感度係数を用いる手法	43	
•	3.2.3.1	直接法	43	
3.2.3.2		摂動論を用いる手法	44	
3.2	.4	従来の不確かさ評価手法における課題	48	
3.3	RON	Aを用いた新たな放射化量の不確かさ定量評価手法	49	
3.3	.1	ROM の概要	49	

目次

3.3	3.2	ROM の原理	55	
3.3	3.3 7	放射化解析への ROM の適用	58	
3.4	不確/	かさ低減手法	61	
3.4	i.1	不確かさ低減手法の概要	61	
3.4	1.2	拡張バイアス因子法	63	
3.4	1.3	ランダムサンプリング法を用いたバイアス因子法	67	
3.5	本章の	のまとめ	72	
第4章	解	析結果	73	
4.1	本章の	ひ概要	73	
4.2	1 次元	E円柱体系における不確かさ評価及び不確かさ低減	73	
4.2	2.1 1	解析体系及び計算条件	73	
4.2	2.2	ランダムサンプリング法を用いた場合	80	
	4.2.2.1	放射化解析の結果及び考察	80	
	4.2.2.2	不確かさ評価結果及び考察	81	
	4.2.2.3	不確かさ低減結果及び考察	83	
4.2	2.3	ROM を用いた場合	88	
	4.2.3.1	計算条件及び解析の流れ	88	
	4.2.3.1	感度係数及び不確かさ評価の結果と考察	89	
4.2	2.4	ROM の導入による計算コストの削減	91	
4.3	2 次元	E r-z 体系における ROM を用いた不確かさ評価及び不確かさ低減	92	
4.3	3.1 1	解析体系及び条件	92	
4.3	3.2	放射化解析の結果及び考察	95	
4.3	3.3	惑度係数及び不確かさ評価の結果と考察	96	
4.3	3.4	不確かさ低減結果及び考察	99	
4.3	3. 5 1	ROM の導入による計算コストの削減	100	
4.4	本章の	ひまとめ	100	
第5章	結		102	
5.1	まとる	b	102	
5.2	今後の	り課題	104	
参考文	献		106	
謝辞			109	
Append	lix.A 離	散座標法を用いた高速な中性子輸送計算コード	110	
A.1 A	ANISN	コードにおける計算時間に関する問題点	110	
A.2 I	PARTIS	N コードに関する問題点	112	
A.3 離散座標法を用いた高速な中性子輸送計算コード				
Append	lix. B SO	CALE の断面積共分散データを用いたランダムサンプリング	116	

B.1 中性子遮蔽計算の不確かさ評価における JENDL-4.0 共分散データの課題	116
B.2 SCALE の断面積共分散データを用いた断面積摂動因子のランダムサンプリ	ングツー
ルの概要	117
B.3 ランダムサンプリングツールの使用方法	121
Appendix. C 核データと計算コードの概要	122
C.1 JENDL-4.0	122
C.2 MATXSLIB-J40	122
C.3 TRANSX	122
C.4 SCALE	125
C.5 ANISN	125
C.6 PARTISN	128
公刊論文リスト	

第1章 序論

1.1 背景及び目的

1.1.1 廃止措置と放射化

近年、原子力発電所の廃止措置が課題となっている。原子炉周囲の構造材は、原子炉で発 生した中性子により放射化されることがある。また、原子炉冷却材等の流体に含まれる放射 性物質が流体を内包する配管や機器等に付着、浸透することで生じる汚染(2 次汚染)も考え られる。廃止措置の際に特に問題となるのは、コンクリートの骨材中に含まれる Co と Eu の放射化である[1]。普通コンクリート(低放射化・高性能コンクリートではない)では、Co、 Eu の含有率はそれぞれ 10ppm、1ppm 程度である[2]。表 1.1.1 にこれら核種の放射化により 生成される放射性物質の特徴を示す[3]。

生成核種	ターゲット核種の天然存在比[-]	生成機構	半減期[年]
¹⁵² Eu	0.4781	$^{151}Eu(n,\gamma)^{152}Eu$	13.54
¹⁵⁴ Eu	0.5219	153 Eu(n, γ) 154 Eu	8.59
⁶⁰ Co	1.0	⁵⁹ Co(n,γ) ⁶⁰ Co	5.27

表 1.1.1 Co と Eu の放射化により生成される放射性物質の特徴・性質

含有率と表 1.1.1 における半減期から、廃止措置開始時は ⁶⁰Co が主要な放射線源であり、 廃炉から時間が経過するほど ¹⁵²Eu による放射線の割合が増えてゆく。廃止措置の際には、 構造材がどれだけ放射化されているか(表 1.1.1 のような放射性物質を含んでいるか)、2 次 汚染されているかを把握し、その度合いに適した廃棄方法を選択する必要がある。

低レベル放射性廃棄物は汚染度の高い順に L1, L2, L3, クリアランスレベル廃棄物と分類 される。クリアランスレベル廃棄物とは汚染度が自然界の物質と同程度のもの(クリアラン ス)であり、放射性物質として扱う必要のないものとして区分した廃棄物のことを言う[1]。 排出される廃棄物の内訳としては、汚染度が低い、具体的には L3 とクリアランスレベル廃 棄物の量が多く、L3 とクリアランスレベル廃棄物を区別することが廃棄コストの観点から 重要となる。現在、構造材の放射能は放射線検出器により測定され、汚染度合いが特定され ているが、

・ 非常に多くの構造材の放射能を測定する必要があり、コストが膨大

汚染度が低く検出器の検出限界に満たない構造材の放射能が特定できない

等の問題があり、数値シミュレーションによって特に原子炉構造材の放射化量を把握する ことが求められている。

4

1.1.2 放射化量評価と不確かさ

原子炉構造材は、中性子との相互作用により放射化することから、放射化量の解析値を求 めるには、構造材中の中性子束分布を計算するための中性子遮へい計算が実施される。しか し、評価された放射化量の解析値にも大きな不確かさが存在することがわかっている。放射 化量の不確かさの要因としては、大きく以下の要因に分けられる。

① 入力パラメータの不確かさ

2 数値解析における近似

入力パラメータの不確かさの例としては、核反応断面積や物質組成の不確かさが挙げら れる。核反応断面積は、断面積測定実験の結果と原子核理論の計算結果を基に評価値が決定 されるため、測定結果のばらつき等により不確かさが存在している。また、一般に中性子遮 へい計算の際に用いる物質組成は規格値であり、例えば、コンクリート中の水分が蒸発し組 成が変化する効果等は取り入れられていないため、物質組成にも不確かさが存在する。数値 解析における近似の例としては、空間メッシュ分割、中性子エネルギーの多群化等がある。 一般的に、中性子遮へい計算は計算コストの観点より決定論的手法が用いられるため、位置 や中性子エネルギーについて離散化し数値解析を実施する。上述の通り、数値シミュレーシ ョンにより評価された放射化量には不確かさが存在するため、放射化量の推定値の精度を 向上させるには、放射化量の不確かさを定量的な手法に基づき評価することと、その評価さ れた不確かさを低減させる必要がある。

入力データに起因する不確かさの代表的な評価手法として、ランダムサンプリング法、直 接法、摂動論が挙げられる[4,5]。それぞれの手法の計算コストとしては、ランダムサンプリ ング法はサンプル数、直接法は入力パラメータの数(例、核反応断面積、構造材原子数密度 等の数)、(1次)摂動論は出力パラメータの数(例、放射化量を評価するメッシュの数)に依存 する。中性子遮へい計算は、空間的に非常に大きくかつ多次元体系を対象とし、中性子エネ ルギーの多群化の際の誤差低減のため詳細群で非等方散乱を考慮して実施されるため、輸 送計算に掛かる計算コストが非常に大きい。放射化量の不確かさの詳細な空間分布を評価 する場合、直接法や摂動論による不確かさの評価は、入出力パラメータ数が膨大となり、計 算コストの観点により困難である。一方、ランダムサンプリング法では、統計誤差の観点に より数百サンプル程度の計算を実施することが望ましく、計算コストの観点において感度 係数を用いる方法と同様に実施が困難であることに加え、感度係数が精度よく評価できな いという問題点がある[6]。

1.1.3 Reduced Order Modeling

感度解析に掛かる計算コストを低減する手法として Khalik らによって提案されている ROM(Reduced order Modeling)と呼ばれる手法がある[7-13]。ROM は入力パラメータに対す る感度係数ベクトルを用いて、感度解析において感度の大きな入力パラメータの摂動方向 (Active Subspace、AS)を特定し、その方向にのみ摂動計算を実施することで、感度解析にお けるモデルを低次元化する手法である。ここで、ROM の説明のため、入力パラメータが3 つ($\Sigma_1, \Sigma_2, \Sigma_3$)、出力パラメータが5つ(R_1, R_2, R_3, R_4, R_5)の簡単な場合について、図 1.1.1のような5つの感度係数ベクトル(g_1, g_2, g_3, g_4, g_5)を考える。図 1.1.1では、5つの感度係数ベクトル(g_1, g_2, g_3, g_4, g_5)を考える。図 1.1.1では、5つの感度係数ベクトルが青色の領域で示した2次元平面上におおよそ存在すると仮定しており、ROMでは、このような問題に対し効力を発揮する。今、2次元平面に直交する方向へ入力パラメータを 摂動させるとすると、内積が0となるため、出力パラメータは変動がほとんど無い。このような摂動は、感度係数の大きさに関する情報を何もたらさないので感度係数評価には実質的に意味を無さない。詳細については3章で述べるが、感度係数ベクトルの向きは、出力パラメータの変動量が最大となる入力パラメータの摂動の方向を示しており、今回のような問題では、2次元平面上の直交座標の方向への感度解析だけで、感度係数を評価できる。つまり、2次元、すなわち2回の摂動計算で感度係数を評価することができることとなる。なお、2次元平面に直交する感度係数ベクトルの成分については、誤差となる。直接法により感度係数を評価する場合、3次元空間に対して感度解析が必要であり、3回の摂動計算を要するので、ROMにより計算コストが削減できる。

図 1.1.1 ROM のイメージ図

ROMは、これまで炉心解析の分野で適用が試みられてきた。例えば、燃料セルの感度係数からASを作成し、集合体の感度係数を算出する[9,11]、集合体の感度係数からASを作成し、炉心体系の感度係数を算出する[13]、などである。本研究では、これまで炉心解析の分野で適用が試みられてきた ROM を放射化解析へ適用することで、入力パラメータの1つである核反応断面積に起因する構造材の放射化量の不確かさ評価に掛かる計算コストの削減を目的とする。本研究における提案手法では、ある構造材中の任意の位置の放射化量の感度係数ベクトルは、その構造材中の代表的な位置の放射化量の感度係数ベクトルの線形結合

で近似的に表現できると仮定し、ASを構築する。代表的な位置の放射化量の感度係数ベクトルは随伴計算を実施し(1次)摂動論により評価することとなるが、少ない代表点における 感度係数ベクトルの線形結合でその構造材中の任意の位置の放射化量の感度係数ベクトル が再現できれば、感度解析における計算コストの削減が期待できる。

1.1.4 不確かさの低減

1.1.3 節では放射化量の不確かさ評価に関する内容について述べたが、放射化量の推定値 の精度を高めるには、原子炉構造材の放射化量を定量的に評価するだけでなく、評価された 不確かさを低減させる必要がある。代表的な不確かさの低減手法として、バイアス因子法が 挙げられる[14,15]。バイアス因子法は、解析値の相関関係と実際に測定された測定値を用い て、解析値を補正し不確かさを低減させる手法である。バイアス因子法は、拡張バイアス因 子法[14]、ランダムサンプリング法を用いたバイアス因子法[15]等、様々な手法が提案され ているが、ここではランダムサンプリング法を用いたバイアス因子法について簡単にイメ ージを説明する。

この手法では、ランダムサンプリングによって得られた出力パラメータの相関を用いる。 以降の説明のため、入力パラメータの不確かさに従ってランダムサンプリング法によって 出力パラメータ A,B を多数サンプル作成したとする。作成された出力パラメータ A,B をサ ンプル毎に図示したものが図 1.1.2 である。

Bの解析値(各サンプル)

図 1.1.2 出力パラメータ A,B の相関

図 1.1.2 より、出力パラメータ A,B の間には正の相関があることがわかる(青色の領域)。出 カパラメータ A の平均値と標準偏差(ばらつき)は、すべてのサンプルの値を統計処理して得 る。ここで、実験により出力パラメータ B の測定値が得られたとする。解析値と測定値の 差異が入力パラメータの不確かさに起因するものである場合、出力パラメータ B の測定値 の情報から、出力パラメータ A の平均値と標準偏差(ばらつき)は、すべてのサンプルの値を 統計処理するのではなく、出力パラメータ B の解析値が測定値の付近のサンプルだけ統計 処理するべきであると考えられる。そのため、新たな測定値の情報から平均値は補正され標 準偏差(ばらつき)も変化する。具体的には、図 1.1.3 で示されるように、平均値が補正され 標準偏差(ばらつき)も相関の幅まで減少する。よって、A,B の解析値の間に強い相関が存在 した場合、B の測定値を得ることができれば、平均値を補正することにより不確かさを大き く削減することができる。

図 1.1.3 バイアス因子法のイメージ図

一般に原子力発電所では、構造材がどの程度放射化されているかを把握するため、大型金箔 を機器やコンクリート等の近くに設置しており[16]、それにより一部の地点の放射化量の測 定値を得ることができる。本研究では、そのような一部の地点の放射化量の測定値が得られ ることを元に、ランダムサンプリングあるいは感度解析において評価された放射化量の相 関を用いて、バイアス因子法を放射化解析へ応用した場合の適用性を検証することを第2の 目的とする。放射化量の測定値と解析値との差異が着目している入力パラメータの不確か さに起因するものであれば、バイアス因子法により、解析値を適切に補正し不確かさを低減 することが期待される。

1.1.5 本研究の目的

以上の内容を踏まえ、放射化解析の基礎研究である本研究の目的を簡潔にまとめると、次 のようになる。

- ① 入力パラメータの一つである核反応断面積に起因する構造材の放射化量の不確かさ評 価における ROM を用いた計算コストの削減
- ② バイアス因子法による放射化量不確かさ低減の検証

廃止措置における放射化解析の課題は今後益々顕在化していくと考えられる。本研究の 目的を達成することで、低計算コストで放射化量の不確かさを評価し、一部の実験値を取り 入れることにより評価された放射化量の補正及び不確かさの低減ができるようになり、廃 止措置におけるコスト低減及び安全性の向上に資することができる。

1.2 本論文の構成

本論文は5章構成である。第1章では、原子炉の廃止措置に関わる背景と本研究の目的 を示した。第2章では、原子炉構造材の放射化解析の基本原理と解析フローについて述べ る。第3章では、原子炉構造材の放射化量の不確かさ定量評価及び低減手法について、詳 細を述べる。第4章では、第3章で説明を行った手法を用いて、構造材放射化量の不確か さ評価及び低減を実施した結果について示す。第5章では、本論文の結論について述べ る。

第2章 原子炉構造材の放射化解析

2.1 本章の概要

本章では、断面積処理から中性子遮へい計算までの原子炉構造材の放射化解析の流れと 解析の原理及び手法について述べる。2.2節では、一般的な放射化解析の概要と解析フロー について述べる。また、放射化解析の中性子遮へい計算における決定論的手法と確率論的手 法の特徴について述べる。2.3節では、断面積の多群化に関して、構造材の"実効的"な断面 積である実効断面積の考え方及び等価原理を用いた実効断面積の評価手法について述べる [17]。2.4節では、構造材中の中性子束分布を評価する中性子遮へい計算で一般的に使用さ れる離散座標法と呼ばれる手法[18]について、ボルツマン輸送方程式から2次元 x-y 体系に おける離散座標方程式の差分式の導出を述べる。また、具体的な2次元 x-y 体系の例を挙 げ、離散座標法を用いた数値解法についても述べる。

2.2 放射化解析の概要と流れ

放射化解析とは、中性子遮へい計算により原子炉周囲の構造材中の中性子束分布を評価 し、内部に含まれる微量のターゲット核種(¹⁵²Eu、⁶⁰Co等)の放射化反応率を評価することで ある。一般に、中性子遮へい計算には、確率論的手法に基づいたモンテカルロ法と、決定論 的手法に基づいた離散座標法が用いられる[18]。

モンテカルロ法は乱数を用いて確率的に中性子の挙動を模擬し、媒質中における中性子 の輸送を計算するものである。中性子遮蔽解析では格納容器や生体遮蔽壁等の構造材中の 中性子束分布を評価する必要があるため、一般的な炉心解析に比べ、解析体系は空間的に非 常に大きなものとなる。そのため、モンテカルロ法では、構造材深層部における中性子のヒ ストリー数を稼ぐことができず、構造材深層部の中性子束分布を評価することが困難であ る。ただし、ダクト部等、中性子が遮蔽体の間隙を伝わって漏れ出るストリーミングと呼ば れる現象が起こると予測される一部の領域についてはモンテカルロ法が用いられる[18]。

一方、離散座標法と呼ばれる手法は、ボルツマン輸送方程式を近似することで数値的に中 性子の輸送を解析する手法である。離散座標法はモンテカルロ法に比べると計算時間が短 いため、遮蔽体系全般に適用される。ただし、決定論的手法では、複雑な体系における中性 子輸送計算が困難であるため、一部の複雑な領域については別途モンテカルロ法で評価さ れる。

構造材中の中性子束分布を精度よく評価するには、詳細なエネルギー群の断面積を用い て解析を行う必要がある(例えば、JENDL-4.0[19]に基づく中性子輸送計算用の MATXSLIB-J40 ライブラリ[20]の中性子群構造は 199 群)。しかし、決定論的手法を用いたとしても、現 在の計算機の性能では、計算コストやメモリの観点から、詳細群の断面積を用いて原子炉周 囲の構造材の中性子束分布を三次元的に評価することは現実的ではない。そのため、多群化 と呼ばれるエネルギー群数の削減処理が行われる。多群化処理は断面積の多群化の前後で 反応率ができるだけ変化しないように考慮され、多群断面積が評価される。 図 2.2.1 に決定論的手法を用いた場合の放射化解析の流れを示す。

図 2.2.1 放射化解析の流れ

まず、MATXSLIB-J40 等の断面積ライブラリを用意する。そして、TRANSX[21]等の断面積 処理コードで、ある温度、バックグランド断面積における構造材及び、放射化ターゲットの (巨視的)多群断面積を作成する(バックグランド断面については、後述)。作成した(巨視的)断 面積を元に PARTISN[22]等の離散座標法に基づいた中性子輸送計算コードを用いて、中性 子遮へい計算を実施し、原子炉構造材中の中性子束分布を評価する。最後に、得られた中性 子束分布と作成した放射化ターゲットの巨視的多群断面積を掛け合わせることにより、構 造材中の放射化量の分布を評価する。

2.3 断面積の処理

2.3.1 実効断面積

前節で述べた通り、中性子遮へい計算においては、計算コストの観点によりエネルギー群 数を減らした多群断面積を用いる。多群断面積の作成の方法としては、様々な方法が考えら れるが、最も重要な事は多群化の前後で反応率ができるだけ変化しないように微視的多群 断面積を作成することである。具体的には、多群断面積は、中性子束を重みとして用いて式 (2.3.1.1)のように表現される。

$$\sigma_g = \frac{\int_{E_g - \Delta E_g}^{E_g} \sigma(E)\phi(E)}{\int_{E_g - \Delta E_g}^{\Delta E_g} \phi(E)}$$
(2.3.1.1)

ここで、式中の変数は以下のものを示す。

 $\phi(E)$:詳細なエネルギー依存性を持つ中性子束、 $\sigma(E)$:詳細なエネルギー依存性を持つ微視的断面積、 σ_a :g群の多群断面積、 ΔE_q :着目するg群のエネルギー範囲

式(2.3.1.1)で示される微視的多群断面積を実効断面積と呼ぶ[17]。この実効断面積を用いて 中性子遮へい計算を実施すれば、詳細群で中性子遮へい計算を実施した場合と反応率を近 似的に等しくすることができるが、式(2.3.1.1)を計算するには詳細なエネルギー依存性を持 つ中性子束 $\phi(E)$ がわかっていなければならない。中性子遮へい計算は、中性子束を求める ために実施するので、実効残面積を評価する際には、 $\phi(E)$ の値はわかっていない。そのた め、 $\phi(E)$ 、つまり詳細なエネルギー群における中性子スペクトルを何らかの仮定に基づい て近似的に設定する必要がある。そのためにまず、中性子スペクトルが何に依存するかにつ いて説明を行う[17]。

今、共鳴核種と非共鳴核種から成るある体積を持った混合物を考える。共鳴核種の濃度を 増加させた場合、共鳴エネルギー付近の中性子スペクトルは大きくひずむ。つまり、中性子 スペクトルのひずみは、混合物の共鳴核種の濃度に依存する。また、その混合物の体積を増 加させた場合、混合物中の空間的な位置によって中性子スペクトルは異なるが、混合物中に おける平均的な中性子スペクトルのひずみは大きくなる。よって、中性子スペクトルのひず みは、混合物の体積に依存する。さらに、図 2.3.1 のように同じ材質の混合物が複数存在す る場合を考える。

図 2.3.1 複数の混合物のイメージ図

赤色枠で囲まれた真ん中の混合物について着目する。この混合物には、他の混合物から逃れ てきた中性子が入射するが、入射する中性子のスペクトルは、周囲の混合物の数が多いほど 平均的にひずむと予想される。つまり、混合物中の平均的な中性子スペクトルのひずみは周 囲の混合物の数や形状等にも依存する。以上の中性子スペクトルのひずみについて整理す ると、中性子スペクトルのひずみは、①混合物そのものの組成、②混合物の大きさ、③周囲 の混合物の数や形状に依存することが定性的に把握できる。

次に、①組成、②混合物の大きさ、③周囲の混合物の数や形状から中性子束のひずみをどのように評価するかを説明する[17]。まず、①の組成について、共鳴核種と非共鳴核種が混ざりあった無限均質体系において、式(2.3.1.2)で示される中性子減速方程式を考える。

$$\Sigma_t(E)\phi(E) = \sum_i \int \Sigma_{s,i}(E')\phi(E')f_i(E' \to E)dE'$$
(2.3.1.2)

ここで、式中の変数は以下のものを示す。

 $\Sigma_t(E)$:混合物の巨視的全断面積、 $\Sigma_{s,i}(E)$:混合物中の核種 i の巨視的散乱断面積 $f_i(E' \rightarrow E)$:核種 i のエネルギーE'からEへの遷移確率

散乱がすべて弾性散乱であるとすると、核種 i に対する遷移確率 $f_i(E' \rightarrow E)$ について式 (2.3.1.3)が成立する。

$$f_i(E' \to E) = \frac{1}{(1 - \alpha_i)E'}$$
 (2.3.1.3)

ここで、式中の変数は以下のものを示す。

$$\alpha_i = \frac{A_i - 1}{A_i + 1} \tag{2.3.1.4}$$

Ai:中性子の質量を1とした時のi核種の質量

以降、混合物中の共鳴核種と非共鳴核種を添え字 r, nr で表す。混合物の巨視的全断面積を、 共鳴核種による項と非共鳴核種による項とに分けて表現すると、式(2.3.1.5)のようになる。 ただし、簡単のため、非共鳴核種の微視的全断面積 σ_{t,nr}はエネルギー依存性がないとする。

$$\Sigma_t(E) = N_r \sigma_{t,r}(E) + N_{nr} \sigma_{t,nr} = N_r (\sigma_{t,r}(E) + \sigma_b)$$
(2.3.1.5)

ここで、式中の変数は以下のものを示す。

$$\sigma_b = \frac{N_{nr}\sigma_{t,nr}}{N_r} \tag{2.3.1.6}$$

 σ_b :バックグランド断面積 N:原子数密度

バックグランド断面積とは、共鳴核種1個あたりの非共鳴核種の微視的全断面積である。非 共鳴核種の吸収が小さく微視的全断面積が微視的散乱断面積とみなせるとし、散乱中性子 源の項を共鳴部分と非共鳴部分に分けると、式(2.3.1.5)を用いて、式(2.3.1.2)は以下のように なる。

$$\left(\sigma_{t,r}(E) + \sigma_b\right)\phi(E) = \int_E^{\frac{E}{\alpha_r}} \frac{\sigma_{s,r}(E')\phi(E')}{(1 - \alpha_r)E'} dE' + \int_E^{\frac{E}{\alpha_{nr}}} \frac{\sigma_b\phi(E')}{(1 - \alpha_{nr})E'} dE'$$
(2.3.1.7)

また、簡単のため、共鳴核種の微視的散乱断面積が一定値のポテンシャル散乱のみであり、 式(2.3.1.7)の右辺の中性子束について式(2.3.1.8)が成立すると近似し代入すると、式(2.3.1.7) は以下の式(2.3.1.9)ように変形できる。式(2.3.1.8)の近似は、式(2.3.1.7)の右辺の積分におい て、共鳴の幅が小さく中性子束のひずみを無視しても積分の値が大きく変わらないことを 意味しているため、NR 近似と呼ばれる[17]。

$$\phi(E) \approx \frac{1}{E} \tag{2.3.1.8}$$

$$\left(\sigma_{t,r}(E) + \sigma_b\right)\phi(E) = \frac{\left(\sigma_{p,r} + \sigma_b\right)}{E}$$
(2.3.1.9)

ここで、式中の変数は以下のものを示す。 *o_{p,r}*: 共鳴核種の微視的ポテンシャル散乱断面積

式(2.3.1.9)より中性子束は以下の式(2.3.1.10)になる。

$$\phi(E) = \frac{(\sigma_{p,r} + \sigma_b)}{E(\sigma_{t,r}(E) + \sigma_b)}$$
(2.3.1.10)

式(2.3.1.10)の特性について考察する。バックグランド断面積 σ_b が大きい場合、すなわち、 共鳴物質がほとんど無い場合は、式(2.3.1.10)は式(2.3.1.11)のように近似できるので、中性子 束は1/Eスペクトルに従うことがわかる。

$$\phi(\mathbf{E}) \approx \frac{1}{E} \tag{2.3.1.11}$$

ー方、バックグランド断面積 σ_b が小さい場合、すなわち、非共鳴物質がほとんど無い場合は、式(2.3.1.10)は式(2.3.1.12)のように近似できるので、中性子束は $\sigma_{t,r}(E)$ に反比例することがわかる。

$$\phi(\mathbf{E}) \approx \frac{\sigma_{p,r}}{E\sigma_{t,r}(E)} \tag{2.3.1.12}$$

次に、②混合物の大きさに関して、図 2.3.2 のような非均質な 2 領域(A,B)体系を考える。 ただし、中性子は領域 A から発生するものとする。

図 2.3.2 非均質な2領域体系

以下、領域 A、B のパラメータを添え字 A、B で表す。領域 A について、以下の式が成立する。

$$V_{A}\Sigma_{tA}(E)\phi_{A}(E) = P_{A \to A}(E) \int \Sigma_{sA}(E')\phi_{A}(E') f_{A}(E' \to E)dE'$$

$$+ P_{B \to A}(E) \int \Sigma_{sB}(E')\phi_{B}(E') f_{B}(E' \to E)dE'$$
(2.3.1.13)

ここで、式中の変数は以下のものを示す。

V:領域の体積

φ(E):(領域の)平均中性子束

P_{A→A}:領域Aで発生した中性子が次にAで反応する確率

P_{B→A}:領域 B で発生した中性子が次に A で反応する確率

ここで、以下の仮定を行う。

- ① 領域 B には共鳴核種は存在しておらず、巨視的吸収断面積が小さく巨視的全断面積は巨 視的散乱断面積とみなせる。
- ② 散乱は弾性散乱である。
- ③ 領域 A, B ともに共鳴による中性子の変化は小さく、右辺の中性子束は1/E'と仮定できる。
- ④ 巨視的散乱断面積Σ_{sA}(E')は一定値である。
- また、 $P_{A \rightarrow B}(E) \ge P_{B \rightarrow A}(E)$ に関して、以下の式(2.3.1.14)の相反定理が成立する。

$$P_{A \to B}(E) = \frac{V_B \Sigma_{tB}(E)}{V_A \Sigma_{tA}(E)} P_{B \to A}(E)$$
(2.3.1.14)

以上の仮定と式(2.3.1.14)、さらに $P_{A \to B}(E) = 1 - P_{A \to A}(E)$ を用いると、式(2.3.1.13)は以下の式 (2.3.1.15)のようになる。

$$\phi_A(E) = \frac{(P_{A \to A}(E)V_A \Sigma_{sA} + (1 - P_{A \to A}(E))V_A \Sigma_{tA}(E))}{EV_A \Sigma_{tA}(E)}$$
(2.3.1.15)

よって、 $P_{A \to A}(E)$ の具体的な形が求まれば、その他のパラメータについては、既知であることから、 $\phi_A(E)$ が算出できる。しかし、 $P_{A \to A}(E)$ は、領域Aで発生した中性子が次にAで反応するという確率値であり、この値を正確に求めるためには、エネルギー点ごとに詳細な中性子輸送計算を行う必要があり、計算時間の観点から事実上困難である。そこで、一般的に領域Aで発生した中性子が次にAで反応する確率 $P_{A \to A}(E)$ に関して、以下のWignerの有理近似が用いられる。

$$P_{A \to A} = \frac{l\Sigma_{tA}(E)}{l\Sigma_{tA}(E) + 1}$$
(2.3.1.16)

ここで、式中の変数は以下のものを示す。

l:平均弦長。中性子が様々な方向からある体積 ∨、表面積 S の領域に入射する場合、この領域を通過する際に作る平均的な弦(軌跡)の長さを表す。

領域 A の平均弦長1は、領域 A の体積 V と表面積 S を用いて、式(2.3.1.17)で表される。

$$l = \frac{4V}{S}$$
(2.3.1.17)

式(2.3.1.16)の Wigner の有理近似式の特性を考察すると、lが大きく領域 A が大きい場合に は、 $P_{A \rightarrow A}$ は 1 となり、lが小さく領域 A が小さい場合には、 $P_{A \rightarrow A}$ は 0 となることがわかる。 これは、定性的な傾向と合致する。実際には、lは以上の中間的な値であるため、Wigner の 有理近似で評価された $P_{A \rightarrow A}(E)$ は近似値である。

式(2.3.1.15)と式(2.3.1.16)より中性子束は式(2.3.1.18)のようになる。

$$\phi_A(E) = \frac{(\Sigma_{sA} + \frac{1}{l})}{E(\Sigma_{tA}(E) + \frac{1}{l})}$$
(2.3.1.18)

ー般的には、Wigner の有理近似式の精度を向上させるため、(典型的な)領域 A の形状にお ける補正因子を考えることで、式(2.3.1.16)は式(2.3.1.19)に、式(2.3.1.18)は式(2.3.1.20)のよう に修正されることとなる。

$$P_{A \to A} = \frac{l\Sigma_{tA}(E)}{l\Sigma_{tA}(E) + a}$$
(2.3.1.19)

$$\phi_A(E) = \frac{(\Sigma_{sA} + \frac{a}{l})}{E(\Sigma_{tA}(E) + \frac{a}{l})}$$
(2.3.1.20)

ここで、式中の変数は以下のものを示す。 a:ベル因子 無限均質系のときと同様に、非共鳴核種の微視的吸収断面積が小さく微視的全断面積を微 視的散乱断面積とし、共鳴核種の散乱が一定値のポテンシャル散乱であると仮定すると、式 (2.3.1.21)、式(2.3.1.22)が成立し式(2.3.1.20)は式(2.3.1.23)に変形できる。

$$\Sigma_{tA}(E) = N_r \sigma_{t,r}(E) + N_{nr} \sigma_{t,nr}(E) = N_r (\sigma_{t,r}(E) + \sigma_b)$$
(2.3.1.21)

$$\Sigma_{sA} = N_r \sigma_{p,r} + N_{nr} \sigma_{t,nr} = N_r (\sigma_{p,r} + \sigma_b)$$
(2.3.1.22)

$$\phi_A(E) = \frac{(\sigma_{p,r} + \sigma_b + \frac{a}{lN_r})}{E(\sigma_{t,r}(E) + \sigma_b + \frac{a}{lN_r})}$$
(2.3.1.23)

最後に、③周囲の混合物の数や形状に関して、次の図 2.3.3 のように領域が配列されている場合の体系について考える。中性子は黄色の領域から発生するとする。

図 2.3.3 領域が配列されている体系

この場合、2領域で考えたときと比べ、ある黄色の領域Aから逃げ出した中性子が他の黄色の領域Aで吸収される効果により、中性子は領域Aから逃げ出しにくくなる。この効果を反映するため、 $P_{A \rightarrow A}(E)$ を以下の式(2.3.1.24)のように補正する。

$$P_{A \to A} = \frac{l\Sigma_{tA}(E)}{l\Sigma_{tA}(E) + \frac{a(1-C)}{1-C+aC}}$$
(2.3.1.24)

ここで、式中の変数は以下のものを示す。 *C*:ダンコフ係数(0 ≤ *C* ≤ 1) 式(2.3.1.24)について考察すると、ダンコフ係数Cが0の場合は、式(2.3.1.19)と同じ式になるため、領域Aが孤立して存在していることとなり、ダンコフ係数Cが1の場合は、 $P_{A \rightarrow A} = 1$ となり、領域Aの均質体系の場合と同様となる。

式(2.3.1.24)を用いることで、最終的に式(2.3.1.20)の中性子束は次の式(2.3.1.25)のように修 正される。

$$\phi_A(E) = \frac{(\sigma_{p,r} + \sigma_b + \frac{a(1-C)}{l(1-C+aC)N_r})}{E(\sigma_{t,r}(E) + \sigma_b + \frac{a(1-C)}{l(1-C+aC)N_r})}$$
(2.3.1.25)

2.3.2 等価原理

前項の無限均質体系および配列体系における中性子束を以下に再掲する。

$$\phi(\mathbf{E}) = \frac{(\sigma_{p,r} + \sigma_b)}{E(\sigma_{t,r}(E) + \sigma_b)}$$
(2.3.2.1)(再揭)

$$\phi_A(E) = \frac{(\sigma_{p,r} + \sigma_b + \frac{a(1-C)}{l(1-C+aC)N_r})}{E(\sigma_{t,r}(E) + \sigma_b + \frac{a(1-C)}{l(1-C+aC)N_r})}$$
(2.3.2.2)(再掲)

式(2.3.2.2)において、以下の式(2.3.2.3)のように置き換えると、式(2.3.2.4)のように表現できる。

$$\sigma'_{b} = \sigma_{b} + \frac{a(1-C)}{l(1-C+aC)N_{r}}$$
(2.3.2.3)

$$\phi(E) = \frac{(\sigma_{p,r} + \sigma_b')}{E(\sigma_{t,r}(E) + \sigma_b')}$$
(2.3.2.4)

これは、式(2.3.2.1)と同じ形である。つまり、配列体系の中性子束は式(2.3.2.3)のようにバッ クグランド断面積*σb*に対して補正を加えた、バックグランド断面積*σb*(以下、等価バックグ ランド断面積と呼ぶ)を用いることで、無限均質の場合と同じように扱うことができる。こ れを等価原理と呼ぶ[17]。

実効断面積は、式(2.3.1.1)、式(2.3.2.4)より等価バックグランド断面積に依存することがわ かる。ここで、等価バックグランド断面積は、濃度に依存するバックグランド断面積に大き さや配列形状の効果を取り入れたものである。つまり、等価バックグランド断面積により、 実効断面積が①組成、②混合物の大きさ、③周囲の混合物の数や形状に依存することが反映 される。

一般に、無限均質体系において、詳細なエネルギー依存性を考慮した中性子束は中性子減 速計算を計算することで容易に評価することができるため、無限均質体系においては、ある バッグランド断面積における実効断面積を計算することができる。様々なバックグランド 断面積σbについて無限均質体系で実効断面積をあらかじめ計算しておき、実際の計算体系 の等価バックグランド断面積σbと照らし合わせることにより、非均質体系の実効断面積を 求めることができる。実効断面積は温度に依存するため、通常は、温度とバックグランド断 面積に対する実効断面積のテーブルを作成し、実効断面積を求める。

2.4 離散座標法を用いた中性子遮へい計算

2.4.1 中性子輸送方程式の関数展開

2.4 節では、汎用的な 2 次元 x-y 座標系に着目した離散座標法の解説を行う[23]。その他の体系(1 次元平板体系等)における離散座標法の解説については、"原子炉物理"(小林啓祐、コロナ社)[23]を参照のこと。2.4.1 節では、導入部分の中性子ボルツマン輸送方程式における角度中性子束の関数展開について解説を行う。

まず、一般的な中性子の輸送を示す定常状態の中性子ボルツマン輸送方程式は、式(2.4.1.1) のように示される。ただし、核分裂による中性子の生成は考えないものとする。

$$\boldsymbol{\Omega} \cdot \nabla \psi(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega}) + \Sigma_t(\boldsymbol{r}, \boldsymbol{E}) \psi(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega}) =$$

$$\int_{4\pi} d\Omega' \int_0^\infty d\boldsymbol{E}' \Sigma_s(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega} \leftarrow \boldsymbol{r}, \boldsymbol{E}', \boldsymbol{\Omega}') \psi(\boldsymbol{r}, \boldsymbol{E}', \boldsymbol{\Omega}') + s(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega})$$
(2.4.1.1)

ここで、式中の変数は以下のものを示す。

 $\Omega = (\Omega_x, \Omega_y, \Omega_z) = (\mu, \eta, \xi)$:中性子の飛行方向

 $\psi(r, E, \Omega)$:位置r = (x, y, z)、エネルギーE、 Ω 方向の角度中性子束、

 $\Sigma_t(\mathbf{r}, E)$:巨視的全断面積

 $\Sigma_{s}(E, \Omega \leftarrow E', \Omega')$:エネルギーE'、方向 Ω' の中性子がエネルギーE、方向 Ω へ散乱される巨視的 散乱断面積

s(*r*,*E*, **Ω**): 位置*r*、エネルギー*E*、Ω方向の固定中性子源

なお、中性子の飛行方向 Ω については、極角 θ を x 軸から測り、方位角 φ は y 軸から測ること とする(一般的には、極角 θ は z 軸から、方位角 φ は x 軸から測るが、今回の飛行方向 Ω の取 り方は、後に得られる散乱中性子源の式を簡単にするためである)。つまり、 Ω は式(2.4.1.2) のように表現される。

$$\mathbf{\Omega} = (\Omega_x, \Omega_y, \Omega_z) = (\mu = \cos\theta, \eta = \sin\theta\cos\varphi, \xi = \sin\theta\sin\varphi)$$
(2.4.1.2)

2 次元 x-y 座標系について考えると、式(2.4.1.1)のボルツマン輸送方程式は z 方向の依存性 が無くなる為、第1項の漏れの項が消え式(2.4.1.3)のようになる。なお、以降位置r = (x, y)であり、断面積についてはrの記載を省略する。

$$\left(\Omega_{x}\frac{\partial}{\partial x}+\Omega_{y}\frac{\partial}{\partial y}\right)\psi(\boldsymbol{r},\boldsymbol{E},\boldsymbol{\Omega})+\Sigma_{t}(\boldsymbol{r},\boldsymbol{E})\psi(\boldsymbol{r},\boldsymbol{E},\boldsymbol{\Omega})=$$

$$\int_{4\pi}d\Omega'\int_{0}^{\infty}dE'\Sigma_{s}(\boldsymbol{r},\boldsymbol{E},\boldsymbol{\Omega}\leftarrow\boldsymbol{r},\boldsymbol{E}',\boldsymbol{\Omega}')\psi(\boldsymbol{r},\boldsymbol{E}',\boldsymbol{\Omega}')+s(\boldsymbol{r},\boldsymbol{E},\boldsymbol{\Omega})$$
(2.4.1.3)

式(2.4.1.3)において、一般的に巨視的散乱断面積 $\Sigma_s(r, E, \Omega \leftarrow r, E', \Omega')$ は Ω には直接依存せず、 $\Omega \ge \Omega'$ がなす角 θ_0 に依存すると考えられる。すると、巨視的散乱断面積は式(2.4.1.4)のよう にルジャンドル多項式により展開することができる。

$$\Sigma_{s}(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega} \leftarrow \boldsymbol{E}', \boldsymbol{\Omega}') = \Sigma_{s}(\boldsymbol{r}, \boldsymbol{E} \leftarrow \boldsymbol{E}', \cos \theta_{0})$$

$$= \lim_{L \to \infty} \frac{1}{4\pi} \sum_{l=0}^{L} (2l+1) \Sigma_{sl}(\boldsymbol{r}, \boldsymbol{E} \leftarrow \boldsymbol{E}') P_{l}(\cos \theta_{0})$$
(2.4.1.4)

ここで、式中の変数は以下のものを示す。 $P_l(\cos \theta_0):l$ 次のルジャンドル関数

l次のルジャンドル関数 $P_l(x)$ は式(2.4.1.5)のように示され、初めの数項は次の式(2.4.1.6)のような関数となる。

$$P_{0}(x) = \frac{1}{2^{l}l!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}$$

$$P_{0}(x) = 1,$$

$$P_{1}(x) = x,$$

$$P_{2}(x) = \frac{1}{2} (3x^{2} - 1),$$

$$P_{3}(x) = \frac{1}{2} (5x^{3} - 3x),$$

$$(2.4.1.6)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3),$$

 $\cos \theta_0$ は Ω 及び Ω' の極角 θ 、 θ' 及び方位角 φ 、 φ' を用いて式(2.4.1.7)ように示される。

$$\cos\theta_0 = \mathbf{\Omega} \cdot \mathbf{\Omega}' = \cos\theta \cos\theta' + \sin\theta \sin\theta' \cos(\varphi - \varphi') \tag{2.4.1.7}$$

式(2.4.1.7)を用いることにより、ルジャンドル多項式は式(2.4.1.8)のように球面調和関数で展開できる[24]。

$$P_{l}(\cos \theta_{0}) = P_{l}(\mu)P_{l}(\mu') + 2\sum_{m=1}^{l} \frac{(l-m)!}{(l+m)!} P_{lm}(\mu)P_{lm}(\mu')\cos m(\varphi - \varphi')$$

$$= \sum_{m=-l}^{l} Y_{lm}(\mathbf{\Omega})Y_{lm}^{*}(\mathbf{\Omega}')$$
(2.4.1.8)

ここで、式中の変数は以下のものを示す。 $Y_{lm}(\Omega)$:球面調和関数、 $Y_{lm}^*(\Omega')$: $Y_{lm}(\Omega)$ の複素共役関数

球面調和関数はルジャンドルの陪関数*P_{lm}(µ)*を用いて式(2.4.1.9)のように示され、初めの数 項は式(2.4.1.10)のような関数となる[25]。

$$Y_{l,m}(\mathbf{\Omega}) = \left(\frac{(l-m)!}{(l+m)!}\right)^{\frac{1}{2}} (-1)^m P_{lm}(\mu) e^{im\varphi}$$
(2.4.1.9)

$$Y_{0,0}(\mathbf{\Omega}) = 1,$$

$$Y_{1,0}(\mathbf{\Omega}) = \cos \theta,$$

$$Y_{1,1}(\mathbf{\Omega}) = -\frac{1}{\sqrt{2}} \sin \theta \, e^{i\varphi},$$

$$Y_{1,-1}(\mathbf{\Omega}) = -\frac{1}{\sqrt{2}} \sin \theta \, e^{-i\varphi},$$

(2.4.1.10)

式(2.4.1.8)を式(2.4.1.4)へ代入すると、散乱断面積は式(2.4.1.11)のようになる。

$$\Sigma_{s}(\boldsymbol{r}, \boldsymbol{E} \leftarrow \boldsymbol{E}', \cos \theta_{0})$$

$$= \lim_{L \to \infty} \frac{1}{4\pi} \sum_{l=0}^{L} (2l+1) \Sigma_{sl}(\boldsymbol{r}, \boldsymbol{E} \leftarrow \boldsymbol{E}') \sum_{m=-l}^{l} Y_{lm}(\boldsymbol{\Omega}) Y_{lm}^{*}(\boldsymbol{\Omega}')$$
(2.4.1.11)

よって、式(2.4.1.3)の散乱中性子源の項は球面調和関数を用いて式(2.4.1.12)のように表現で きる。

$$\int_{4\pi} d\Omega' \int_0^\infty dE' \Sigma_s(\boldsymbol{r}, \boldsymbol{E}, \boldsymbol{\Omega} \leftarrow \boldsymbol{r}, \boldsymbol{E}', \boldsymbol{\Omega}') \psi(\boldsymbol{r}, \boldsymbol{E}', \boldsymbol{\Omega}')$$

$$= \frac{1}{4\pi} \sum_{l=0}^\infty (2l+1) \int_0^\infty dE' \Sigma_{sl}(\boldsymbol{r}, \boldsymbol{E} \leftarrow \boldsymbol{E}') \sum_{m=-l}^l Y_{lm}(\boldsymbol{\Omega}) \int_{4\pi} Y_{lm}^*(\boldsymbol{\Omega}') \psi(\boldsymbol{r}, \boldsymbol{E}', \boldsymbol{\Omega}') d\Omega'$$
(2.4.1.12)

なお、式を実数で表現するため、球面調和関数を実部と虚部に分割し、実球面調和関数を式 (2.4.1.13)のように表現する。

$$R_{lm}(\mathbf{\Omega}) = \frac{\sqrt{\varepsilon_m}}{2} \left(Y_{lm}(\mathbf{\Omega}) + Y_{lm}^*(\mathbf{\Omega}') \right), \qquad (m \ge 0)$$

$$= \frac{1}{\sqrt{2i}} \left(Y_{lm}(\mathbf{\Omega}) - Y_{lm}^*(\mathbf{\Omega}') \right), \qquad (m < 0)$$

(2.4.1.13)

ここで、式中の変数は以下のものを示す。 $\varepsilon_m = 2 - \delta_{m0}$: δ_{m0} はクロネッカーのデルタ

式(2.4.1.13)を用いると、散乱中性子源の項は実球面調和関数を用いて式(2.4.1.12)と同様に式 (2.4.1.14)のように表現できる。

$$\int_{4\pi} d\Omega' \int_0^\infty dE' \Sigma_s(\mathbf{r}, E, \mathbf{\Omega} \leftarrow \mathbf{r}, E', \mathbf{\Omega}') \psi(\mathbf{r}, E', \mathbf{\Omega}')$$

$$= \frac{1}{4\pi} \sum_{l=0}^\infty (2l+1) \int_0^\infty dE' \Sigma_{sl}(\mathbf{r}, E \leftarrow E') \sum_{m=-l}^l R_{lm}(\mathbf{\Omega}) \int_{4\pi} R_{lm}(\mathbf{\Omega}') \psi(\mathbf{r}, E', \mathbf{\Omega}') d\Omega'$$
(2.4.1.14)

今回、中性子の飛行方向 Ω について、方位角 φ は y 軸から測っていたため、z 軸に対して対称な ψ は φ に対して偶関数であり、 φ について奇関数を掛け合わせると消える。つまり、散乱中性子源の項である式(2.4.1.14)について、mの足し合わせは $R_{lm}(\Omega)$ が偶関数である、 $m \ge 0$ の場合のみ実施すればよく、簡略化することができる。

角度中性子束についても、実球面調和関数により、式(2.4.1.15)のように展開される。

$$\psi(\mathbf{r}, E, \mathbf{\Omega}) = \frac{1}{4\pi} \sum_{l=0}^{\infty} (2l+1) \sum_{m=-l}^{l} \psi_{lm}(\mathbf{r}, E) R_{lm}(\mathbf{\Omega})$$
(2.4.1.15)

ここで、式中の変数は以下のものを示す。

ψ_{lm}(**r**):角度中性子束の展開係数(角度中性子束モーメントとも呼ぶ)

式(2.4.1.15)に、R_{lm}(**Ω**)を掛け、全立体角で積分し、さらに式(2.4.1.16)で示される球面調和関 数の直交関係を使うと、展開係数ψ_{lm}(**r**)は式(2.4.1.17)のようになる。

$$\int_{4\pi} R_{lm}(\mathbf{\Omega}) R_{l'm'}(\mathbf{\Omega}) d\Omega = \frac{4\pi}{2l+1} \delta_{ll'} \delta_{mm'}$$
(2.4.1.16)

ここで、式中の変数は以下のものを示す。

δ_{ll'}, δ_{mm'}: クロネッカーのデルタ

$$\psi_{lm}(\mathbf{r}, E) = \int_{4\pi} R_{lm}(\mathbf{\Omega}) \psi(\mathbf{r}, E, \mathbf{\Omega}) d\Omega \qquad (2.4.1.17)$$

式(2.4.1.17)を式(2.4.1.14)に代入すると、散乱中性子源は式(2.4.1.18)のように展開係数を用いて表現することができる。

$$\int_{4\pi} d\Omega' \int_0^\infty dE' \Sigma_s(\mathbf{r}, E, \mathbf{\Omega} \leftarrow \mathbf{r}, E', \mathbf{\Omega}') \psi(\mathbf{r}, E', \mathbf{\Omega}')$$

$$= \frac{1}{4\pi} \sum_{l=0}^\infty (2l+1) \int_0^\infty dE' \Sigma_{sl}(\mathbf{r}, E \leftarrow E') \sum_{m=-l}^l R_{lm}(\mathbf{\Omega}) \psi_{lm}(\mathbf{r}, E')$$
(2.4.1.18)

2.4.2 離散座標方程式の導出

2.4.2 節では、離散座標方程式(S_N 方程式)の導出について説明を行う。ボルツマン輸送方 程式を解く方法の一つとして前節で述べた角度中性子束を L 次までの球面調和関数で展開 して解く、P_L法がある[23]。P_L法は、ボルツマン輸送方程式の角度依存性Ωを直接扱う代わ りに、球面調和関数による展開を実施し、展開係数に対する偏微分方程式を解くことで角度 依存性を考慮する方法である。一方、離散的な角度方向のみを考えて角度依存性を考慮する 方法として、離散座標法(S_N法)と呼ばれる手法がある。離散座標法の特徴は中性子の飛行方 向を離散化し、離散化された方向へのボルツマン輸送方程式を解くことである。

前節で導出した式(2.4.1.17)は、全立体角に対する積分を含んでいる。離散座標法では、この積分を式(2.4.2.1)のように全立体角に対する離散化を行い、近似的に評価する。

$$\psi_{lm}(\mathbf{r}, E) = \int_{4\pi} R_{lm}(\mathbf{\Omega}) \psi(\mathbf{r}, E, \mathbf{\Omega}) d\Omega = 4\pi \sum_{n} \omega_n R_{lm}(\mathbf{\Omega}_n) \psi(\mathbf{r}, E, \mathbf{\Omega}_n)$$
(2.4.2.1)

ここで、式中の変数は以下のものを示す。 ω_n :求積公式の重み(ただし、 $\sum_n \omega_n = 1$) Ω_n : 離散化された中性子の角度方向

式(2.4.2.1)より、この積分を正確に求めることが、離散座標法では一つのポイントである。 一般に、(ω_n , Ω_n)の組み合わせを分点セットと呼び、代表的な分点セットとしては、 Chebyshev-Legendre 分点等が挙げられる[26]。分点セットは、できるだけ少ない中性子の飛 行方向 Ω_n で、式(2.4.2.1)における高次のl,mまでの積分を正確に求めることが望まれる。

離散座標法で用いられる離散座標方程式は、式(2.4.1.1)において**Ω**を**Ω**_nと置き、式(2.4.1.18) を用いることで式(2.4.2.2)のように得られる。

$$\mathbf{\Omega}_n \cdot \nabla \psi(\mathbf{r}, E, \mathbf{\Omega}_n) + \Sigma_t(\mathbf{r}, E) \psi(\mathbf{r}, E, \mathbf{\Omega}_n) = \mathbf{Q}(\mathbf{r}, E, \mathbf{\Omega}_n)$$
(2.4.2.2)

ここで、式中の変数は以下のものを示す。

$$Q(\mathbf{r}, E, \mathbf{\Omega}_n) = \frac{1}{4\pi} \sum_{l=0}^{\infty} (2l+1) \int_0^{\infty} dE' \Sigma_{sl}(\mathbf{r}, E \leftarrow E') \sum_{m=-l}^l R_{lm}(\mathbf{\Omega}_n) \psi_{lm}(\mathbf{r}, E') + s(\mathbf{r}, E, \mathbf{\Omega}_n)$$
(2.4.2.3)

ここで、図 2.4.1 のような 2 次元 x-y 体系における *i* 番目のメッシュについて考える。なお、 簡単のため、以降、変数のエネルギーEについては省略して議論を進める。

式(2.4.2.2)を空間について積分すると、式(2.4.2.4)のように示される。

$$\mu_n \Delta y \left(\psi_{i+\frac{1}{2},j,n} - \psi_{i-\frac{1}{2},j,n} \right) + \eta_n \Delta x \left(\psi_{i,j+\frac{1}{2},n} - \psi_{i,j-\frac{1}{2},n} \right) + \Sigma_t V_{i,j} \psi_{i,j,n} = V_{i,j} Q_{i,j,n}$$
(2.4.2.4)

ここで、式中の変数は以下のものを示す。

$$\Delta x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}, \Delta y = y_{i+\frac{1}{2}} - y_{i-\frac{1}{2}}, V_{i,j} = \Delta x \Delta y,$$

$$\Delta y \psi_{i+\frac{1}{2},j,n} = \int_{y_{i-1/2}}^{y_{i+1/2}} \psi(x_{i+1/2}, y, \mathbf{\Omega}_n) dy, \Delta x \psi_{i,j+\frac{1}{2},n} = \int_{x_{i-1/2}}^{x_{i+1/2}} \psi(x, y_{i+1/2}, \mathbf{\Omega}_n) dx$$

$$V_{i,j} \psi_{i,j,n} = \int_{x_{i-1/2}}^{x_{i+1/2}} dx \int_{y_{i-1/2}}^{y_{i+1/2}} \psi(x, y, \mathbf{\Omega}_n) dy, V_{i,j} Q_{i,j,n} = \int_{x_{i-1/2}}^{x_{i+1/2}} dx \int_{y_{i-1/2}}^{y_{i+1/2}} Q(x, y, \mathbf{\Omega}_n) dy$$

式(2.4.2.4)は、未知数の数が式の数よりも多くて解くことができない。そこで、式(2.4.2.5)で 示されるような、メッシュ平均の角度中性子束 $\psi_{i,j,n}$ がメッシュ境界の角度中性子束 $\psi_{i+\frac{1}{2},j,n}, \psi_{i-\frac{1}{2},j,n}$ 及び $\psi_{i,j+\frac{1}{2},n}, \psi_{i,j-\frac{1}{2},n}$ の平均値になるという近似を考える。

$$\psi_{i,j,n} = \frac{1}{2} \left(\psi_{i+\frac{1}{2},j,n} + \psi_{i-\frac{1}{2},j,n} \right) = \frac{1}{2} \left(\psi_{i,j+\frac{1}{2},n} + \psi_{i,j-\frac{1}{2},n} \right)$$
(2.4.2.5)

$$\begin{split} \psi_{i+\frac{1}{2},j,n} &= 2\psi_{i,j,n} - \psi_{i-\frac{1}{2},j,n} \\ \psi_{i,j+\frac{1}{2},n} &= 2\psi_{i,j,n} - \psi_{i,j-\frac{1}{2},n} \end{split} \tag{2.4.2.6}$$

これらの式を式(2.4.2.4)に代入すると、式(2.4.2.8)が得られる。

$$(-2\mu_n \Delta y + 2\eta_n \Delta x + \Sigma_t V_{i,j}) \psi_{i,j,n} = -2\mu_n \Delta y \psi_{i-\frac{1}{2}j,n} + 2\eta_n \Delta x \psi_{i,j-\frac{1}{2}n} + V_{i,j} Q_{i,j,n}$$
(2.4.2.8)

式(2.4.2.8)より、入射角度中性子束 $\psi_{i-\frac{1}{2}j,n}$ 、 $\psi_{i,j-\frac{1}{2},n}$ がわかれば、メッシュ平均の角度中性子 束 $\psi_{i,j,n}$ が評価できることがわかる。そして、メッシュ平均の角度中性子束 $\psi_{i,j,n}$ がわかれば、 式(2.4.2.6)、(2.4.2.7)より流出角度中性子束 $\psi_{i+\frac{1}{2}j,n}$ 、 $\psi_{i,j+\frac{1}{2}n}$ が得られる。

なお、式(2.4.2.5)では、メッシュ平均の角度中性子束がメッシュ境界の角度中性子束の平 均値になるという近似を用いているが、これは必ずしも良い近似であるとは限らない。今、 式(2.4.2.9)のようにメッシュ境界の角度中性子束の重みを変えた差分式について考える。こ れを重み付き差分近似式と呼ぶ[23]。

$$\psi_{i,j,n} = a\psi_{i+\frac{1}{2},j,n} + (1-a)\psi_{i-\frac{1}{2},j,n} = b\psi_{i,j+\frac{1}{2},n} + (1-b)\psi_{i,j-\frac{1}{2},n}$$
(2.4.2.9)

ここで、式中の変数は以下のものを示す。 *a*:定数(0 ≤ *a* ≤ 1)、*b*:定数(0 ≤ *b* ≤ 1)

今、 $\mu_n > 0, \eta_n > 0$ の角度中性子束について考えるとすると、式(2.4.2.9)を用いて式(2.4.2.4)を 変形することで、例えば、式(2.4.2.10)のような $\psi_{i+\frac{1}{2},j,n}$ 、 $\psi_{i-\frac{1}{2},j,n}$ 、 $\psi_{i,j-\frac{1}{2},n}$ に関する三点階差式 を得ることができる。

$$(\mu_{n}\Delta y + \eta_{n}\Delta x + \Sigma_{t}V_{i,j}a)\psi_{i+\frac{1}{2},j,n} =$$

$$V_{i,j}Q_{i,j,n} + (\mu_{n}\Delta y + \eta_{n}\Delta x(a-1) + \Sigma_{t}V_{i,j}(a-1))\psi_{i-\frac{1}{2},j,n}$$

$$+ \eta_{n}\Delta x(2-b)\psi_{i,j-\frac{1}{2},n}$$

$$(2.4.2.10)$$

式(2.4.2.10)について、($\mu_n > 0, \eta_n > 0$ であるので)左辺の係数及び右辺第3項の係数は正であ り、右辺第1項も正である。よって、正の入射角度中性子束 $\psi_{i-\frac{1}{2}j,n}, \psi_{i,j-\frac{1}{2}n}$ が得られた場合、 式(2.4.2.11)で示すように右辺第3項の係数が正であれば、流出角度中性子束 $\psi_{i+\frac{1}{2}j,n}$ は常に正 となる。

$$\mu_n \Delta y + \eta_n \Delta x (a-1) + \Sigma_t V_{i,j} (a-1) \ge 0$$
(2.4.2.11)

しかし、逆に右辺第3項の係数が負になれば、反復計算において数値計算の不安定性が現れ る可能性がある。式(2.4.2.11)において負になりえる項は左辺第2項、第3項である。式 (2.4.2.10)の右辺第3項の係数が負になりやすい条件としては、例えば、y方向のメッシュ分 割幅Δyに対するx方向のメッシュ分割幅Δxが著しく大きい場合が考えられる。一方、a=1 の場合、右辺第3項の係数は正であるため、数値計算上の不安定性は現れない。一般的に、 a=1の時の差分近似式をステップ差分式[23]、式(2.4.2.5)のような、a=1,b=1の時の差分 近似式をダイヤモンド差分近似式[23]と呼ぶ。数値計算上の観点からは、上述したようにス テップ差分式が有効であるが、メッシュ離散化に対して精度の低下が小さいのはダイヤモ ンド差分式(重み付き差分式)である(ステップ差分式は、位置に対するテイラー級数展開の 第1項まで、ダイヤモンド差分式は、第2項まで取ったことに相当する[23])。反復計算の過 程で負の流出角度中性子束が得られると、以降の transport sweep が適切に行われない可能性 があるため、負の流出角度中性子束が得られた場合、その角度中性子束を強制的に0とする 方法も存在している(zero-fixed up 法)[23]。差分法の選択については、解析体系により適切に 選択する必要がある。

2.4.3 離散座標方程式を用いた数値解法

2.4.3 節では、中性子の輸送及び拡散計算を行う一般的な数値解法である反復法を用いた、2次元 x-y 体系における離散座標法の数値解析手法について述べる。また、反復法における 収束性を高める手法として、離散座標法で一般的に用いられる CMFD 加速法[27]について述べる。 まず、離散座標法の一般的な数値解析手法について述べる。式(2.4.2.8)を数値解析する方法は、大きく分けて2つあり、1つは行列演算により求める方法である。式(2.4.2.8)は、*i,j,n*に依存して存在し、式(2.4.2.8)の右辺に固定中性子源を残し後は左辺に移行した方程式を考え、それらを連立方程式として行列にまとめると、式(2.4.3.1)のようになる。

$$A\psi = Q \tag{2.4.3.1}$$

ここで、式中の変数は以下のものを示す。

A: 式(2.4.2.8)の係数をまとめた行列

ψ:角度中性子束ベクトル

Q:固定中性子源ベクトル

式(2.4.3.1)は、LU分解法等により解くこともできるが、*i,j,n*が大きくなるほど、Aのサイズが大きくなり、計算機メモリや計算コストの観点より実施することが困難となる。A行列は 粗行列であり、粗行列に対しては、2つめの手法である反復法と呼ばれる手法が有効である ことがわかっている。

反復法とは内部反復過程と外部反復過程に分け、各過程で収束計算を実施し式(2.4.3.1)の ような連立方程式を解く手法である。中性子輸送計算における内部反復過程は、簡潔に述べ るとあるエネルギー群における角度中性子束分布を収束させる過程である。なお、あるエネ ルギー群における角度中性子束分布を評価するには、式(2.4.2.3)の散乱中性子源の項が自群 散乱を含むため、1次元体系であっても収束計算が必要となる。他の群からの中性子源分布 (散乱中性子源等)がわかっているとして、ガウス・ザイデル法[28]等により収束計算を実施 する。一方の外部反復は、核分裂中性子源分布自体を収束させる過程である。以上の内部反 復と外部反復を組み合わせることで、最終的に評価したい角度中性子束を評価することが 可能となる。反復法の詳細については、"拡散方程式の数値解法"(山本章夫、第 36 回炉物理 夏期セミナーテキスト)[29]がわかりやすいので参照のこと。

以降では、2 次元 x-y 体系における離散座標法を用いた数値解法について、内部反復の transport sweep に着目し、具体例を用いながら説明を行う。対象とする体系は図 2.4.2 のよ うな領域を x 方向に 5 分割、y 方向に 5 分割した 2 次元 x-y 体系を考える(5×5)。なお、 transport sweep では、基本的に収束性の早いガウス・ザイデル法が用いられ、本節の transport sweep の説明でもガウス・ザイデル法を使用する。ガウス・ザイデル法は、簡単に述べると、 積極的にすでに分かっている更新された変数の値を用いて収束計算を実施していく方法で ある。

図 2.4.2 対象とする 2 次元 x-y 体系(5×5)

図 2.4.2 の体系における transport sweep を考える前に、まず、あるメッシュのある方向 $\Omega_n(\mu_n > 0, \eta_n > 0)$ の角度中性子束の評価の流れについて考える。方向 $\Omega_n(\mu_n > 0, \eta_n > 0)$ の 散乱中性子源が既知である場合、式(2.4.2.8)より $\mu_n > 0, \eta_n > 0$ の角度中性子束は、 $\psi_{i-\frac{1}{2},j,n}$ 及

び $\psi_{i,j-\frac{1}{2},n}$ がわかっているならばメッシュ中点の角度中性子束 $\psi_{i,j,n}$ が評価することができ、 メッシュ中点の角度中性子束 $\psi_{i,j,n}$ が評価できれば、式(2.4.2.6)、(2.4.2.7)より、 $\psi_{i+\frac{1}{2},j,n}$ 及び $\psi_{i,j+\frac{1}{2},n}$ を評価することができる。以上の角度中性子束の評価の流れをイメージしたものが 図 2.4.3 である。 $\mu_n > 0, \eta_n > 0$ の角度中性子束については、▲の部分の流入角度中性子束か

ら、■の部分のメッシュ中点の角度中性子束を求め、最後に△の部分の流出角度中性子束が 評価することができる。

図 2.4.3 角度中性子束を評価する流れ($\mu_n > 0, \eta_n > 0$ の場合)

その他の中性子の飛行方向の場合(具体的には、 $\mu_n < 0, \eta_n > 0 \ge \mu_n < 0, \eta_n < 0 \ge \mu_n > 0, \eta_n < 0$)についても同様に、角度中性子束を評価する流れを考えることができ、まとめると図 2.4.4 のようになる。

境界条件条件については、一般的に完全反射境界では入射角度中性子束は式(2.4.3.2)のように示され、真空境界では入射角度中性子束は式(2.4.3.3)のように示される。

$$\psi_{i,j,n} = \psi_{i,j,n'} \text{ if } \begin{cases} i = p + 1/2 & (\mu_n, \eta_n) = (-\mu_{n'}, \eta_{n'}) \\ j = q + 1/2 & (\mu_n, \eta_n) = (\mu_{n'}, -\eta_{n'}) \\ i = 1 - 1/2 & (\mu_n, \eta_n) = (-\mu_{n'}, \eta_{n'}) \\ j = 1 - 1/2 & (\mu_n, \eta_n) = (\mu_{n'}, -\eta_{n'}) \end{cases}$$
(2.4.3.2)

ここで、式中の変数は以下のものを示す。 p:x 方向のメッシュ分割数, q:y 方向のメッシュ分割数

$$\psi_{i,j,n} = 0 \quad if \quad \begin{cases} i = p + 1/2 & \mu_n < 0\\ j = q + 1/2 & \Rightarrow \eta_n < 0\\ i = 1 - 1/2 & \Rightarrow \mu_n > 0\\ j = 1 - 1/2 & \eta_n > 0 \end{cases}$$
(2.4.3.3)

以上の内容を踏まえ、図 2.4.2 の体系における transport sweep を考える。図 2.4.4 より、 transport sweep には、中性子の飛行方向で大きく4種類($\mu_n > 0, \eta_n > 0 \ge \mu_n < 0, \eta_n > 0 \ge \mu_n > 0$, $\eta_n < 0 \ge \mu_n < 0, \eta_n < 0$)に分けなければならないことがわかる。これは、中性子の飛行方向 により、transport sweep の方向が変わるからである。以下に、内部反復計算の一連の流れを 示す。transport sweep は、左下のメッシュ(x₁,y₁)から実施することとする。ただし、収束性と いう観点においては、真空境界条件を与える方向から transport sweep を開始するのが望まし いため(流入角度中性子束=0 と確定しており、収束の効率が良い)、境界条件により、開始の メッシュ位置を変更することが考えられる。

- 1) まず、角度中性子束の初期値を与え、暫定的な散乱中性子源を評価
- μ_n > 0,η_n > 0の最初の中性子の飛行方向について、境界条件の式(2.4.3.2), (2.4.3.3)及び 差分方程式の式(2.4.2.6)~(2.4.2.8)より、図 2.4.5 のように左下から右上へと transport sweep を実施。
- 3) 2)で求められた角度中性子束より散乱中性子源の値を更新(ガウス・ザイデル法)
- 4) μ_n > 0,η_n > 0のすべての中性子の飛行方向について、2),3)を実施。
- 5) 中性子の飛行方向µ_n < 0,η_n > 0,µ_n > 0,η_n < 0,µ_n < 0,η_n < 0の角度中性子束について も同様に 2)~4)を実施。ただし、各々transport sweep の流れは 図 2.4.5 で示すように変 化する。
- 6) 5)より、すべての飛行方向の角度中性子束が求まる。
- 7) 散乱中性子源及び、全中性子束が収束条件を満たすか確認。満たさなければ、2)に戻り 再度反復計算を実施。

図 2.4.5 2 次元 x-y 体系における transport sweep の流れ

以上は、離散座標法の内部反復計算の解説であったが、次に、反復法の収束性を向上させるための、加速法について述べる。加速法には、その用途に応じて様々な加速法があるが、中でも離散座標法で用いられることの多い CMFD(Coarse Mesh Finite Difference)加速法[27] と呼ばれる手法について概要を解説する。離散座標法の収束特性は、無限均質体系においては、散乱比(Σs/Σt)に比例して悪くなり、一般に遮蔽構造材として設定される水やコンクリートは散乱比が大きいため、加速法の導入は重要となる。

CMFD 加速法の特徴は、中性子輸送計算とは別に、拡散方程式を有効活用して加速を行うことである。これは、拡散方程式に次のような特徴がある為である。

・角度方向の計算が不要であるため、計算コストが小さい

・自群散乱の項を陽に扱う必要が無いため、散乱比(Σs/Σt)が1に近くても収束性が悪化しない

今、CMFDの解説において図 2.4.6のような、簡単な1次元平板体系を考えるとする。

図 2.4.6 1 次元平板体系(CMFD 加速法)

図 2.4.6 で示されるような1次元平板体系では、拡散方程式における全中性子束と正味の中 性子流の関係は式(2.4.3.4)のように表現される。

$$J_{i+1/2} = -\frac{2\alpha D_i D_{i+1}}{D_i \Delta_{i+1} + D_{i+1} \Delta_i} (\phi_{i+1} - \phi_i)$$
(2.4.3.4)

ここで、式中の変数は以下のものを示す。 D_i :空間メッシュiの拡散係数、 Δ_i :空間メッシュiの空間メッシュ幅

拡散方程式がn回目の中性子輸送計算の全中性子束 ϕ_i と正味の中性子流 $J_{i+1/2}$ の関係を再現 するように、以下の式(2.4.3.5)のように補正項 D^n_{cor} を追加することを考える。ただし、式 (2.4.3.5)では部分中性子流は再現できないことに注意する必要がある。

$$J_{i+1/2} = -\frac{2\alpha D_i D_{i+1}}{D_i \Delta_{i+1} + D_{i+1} \Delta_i} (\phi_{i+1} - \phi_i) + D_{cor}^n (\phi_{i+1} + \phi_i)$$
(2.4.3.5)

ここで、式中の変数は以下のものを示す。

 α : 反復計算の収束を安定化させる安定化因子。空間メッシュの光学距離が1と比べて十分 小さければ $\alpha = 1$ 、光学距離が1より大きくなり反復計算が不安定になる場合には $\alpha > 1$ の 値を設定。

式(2.4.3.5)中の補正係数Dⁿ_{cor}は次の式(2.4.3.6)ように評価することができる。

$$D_{cor}^{n} = \frac{J_{i+1/2,tr}^{n} + \frac{2\alpha D_{i} D_{i+1}}{D_{i} \Delta_{i+1} + D_{i+1} \Delta_{i}} (\phi_{i+1,tr}^{n} - \phi_{i,tr}^{n})}{\phi_{i+1,tr}^{n} + \phi_{i,tr}^{n}}$$
(2.4.3.6)

ここで、式中の変数は以下のものを示す。

 $\phi_{i,tr}^{n}: n$ 回目の中性子輸送計算により得られたメッシュiのメッシュ平均の全中性子束 $J_{i+1/2,tr}^{n}: n$ 回目の中性子輸送計算により得られた(メッシュiとメッシュi+1の)メッシュ境 界の正味の中性子流

CMFD 加速法では、式(2.4.3.5)の中性子流を用いた拡散方程式の差分方程式を解き、その結果を n 回目の中性子輸送方程式の結果に反映させることで、中性子輸送方程式の収束性を 高める。具体的には、次のような手順で CMFD 加速法を適用する。

1) n回目の中性子輸送計算の結果より、Dⁿcorを評価する。

2) 式(2.4.3.5)の中性子流を用いた拡散方程式の差分方程式を反復法等により解析し、全中

性子束の結果を得る。

- 3) 得られた全中性子束の結果と n 回目の中性子輸送計算により得られた全中性子束の比 fi.aをすべてのエネルギー、メッシュ点において評価する。
- 4) f_{i,g}を n 回目の中性子輸送計算で得られた該当するエネルギー、メッシュ点の全角度方向の角度中性子束に掛け合わせ、再度、n+1 回目の中性子輸送計算の反復計算に移る。

2.5 本章のまとめ

2章では、一般的な原子炉構造材の放射化解析の流れと原理及び手法について述べた。2.1 節では、原子炉構造材の放射化解析における2章の概要を述べた。2.2節では、放射化解析 の全体的な概要と流れについて説明し、一般的に中性子遮へい計算手法としては、ボルツマ ン輸送方程式に基づく離散座標法が用いられることを述べた。2.3節では、中性子遮へい計 算における断面積の処理に関して、実効断面積及び等価原理の考え方について述べた。等価 原理については、バックグランド断面積と呼ばれるパラメータを考えることで、均質体系の 実効断面積を評価しておくことで、非均質体系の実効断面積を近似的に評価できることを 示した。2.4節では、2次元 x-y体系の離散座標法(S_N法)を用いた中性子遮へい計算の原理及 び数値解法について述べた。まず、球面調和関数展開されたボルツマン輸送方程式において、 角度方向を離散的に取り扱うことで、離散座標方程式の差分式が導出できることを示した。 そして、2次元 x-y体系の具体例を用いながら、反復法と呼ばれる数値解析手法における transport sweepの実施方法について詳細を述べ、その反復法の収束性を向上させるために離 散座標法において用いられることの多い CMFD 加速法についても述べた。
第3章 放射化量の不確かさ定量評価及び低減手法

3.1 本章の概要

本章では、入力パラメータの一つである核反応断面積に起因した放射化量の不確かさの 定量評価手法及び評価された不確かさの低減手法について述べる。3.2節では、従来の放射 化量の不確かさ定量評価手法として、代表的なランダムサンプリング法[4]と感度係数を用 いる手法(直接法及び摂動論[5]による方法)について述べる。3.3節では、従来の放射化量の 不確かさ定量評価手法において課題であった計算コストを大幅に削減することを目的とし て、本研究で開発された ROM を用いた新たな放射化量の不確かさ定量評価手法について述 べる[7-13]。また、3.4節では、計算値の相関関係と実験値を用いて、評価された放射化量の 不確かさを低減し、計算値の精度を向上するバイアス因子法[14,15]について述べる。最後に、 3.5節では、本章のまとめを述べる。

3.2 従来の放射化量の不確かさ評価手法

3.2.1 代表的な不確かさ評価手法の概要

核反応断面積の不確かさに起因する放射化量の不確かさを定量的に評価する代表的な手 法は、大きく分けて2種類存在する。1つ目は、乱数を用いて核反応断面積の不確かさに従 って摂動させた核反応断面積のサンプルを多数作成し、作成したサンプルを用いて放射化 解析を行い、最後に結果を統計処理することで、断面積の不確かさに起因した放射化量の不 確かさを定量的に評価するサンプリング手法である。このサンプリング手法としては、ラン ダムサンプリング法[4]やラテン超方格サンプリング法[30]等がある。ランダムサンプリング 法は核反応断面積に対し、反応断面積間の相関を考慮しつつ単純にランダムなサンプリン グを行う手法である。ラテン超方格サンプリング法は効率的にサンプリングを行うため、 各々の核反応断面積のサンプリング範囲をサンプル数と同じ区間に分割し、どの核反応断 面積に対しても各区間に属するサンプル点が1個ずつとなるようにサンプリングする手法 である。

不確かさを定量的に評価する2つ目の方法は、式(3.2.1.1)で示される感度係数を用いる手 法である。

$$G \equiv \frac{\partial R}{\partial \Sigma} \tag{3.2.1.1}$$

ここで、式中の変数は以下のものを示す。 R: 放射化量の値、Σ: 巨視的核反応断面積

式(3.2.1.1)で示される感度係数を評価する代表的な手法としては、直接法や摂動論を用いる

手法が挙げられる[5]。直接法は、巨視的核反応断面積に摂動を与えて感度解析を実施し、感 度係数を評価する手法である。(1次)摂動論を用いる方法では、通常の中性子束分布を評価 する forward 計算に加え、感度を求めたい核特性に対する重要度(インポータンス)である随 伴中性子束分布を評価する adjoint 計算を実施する。詳細については以降の節で述べるが、 中性子束分布と随伴中性子束分布に加え、核反応断面積が摂動した場合の輸送方程式の変 化の情報より感度を評価する。なお、中性子束分布と随伴中性子束分布の内積は、感度を求 めたい放射化量の値となる。直接法や摂動論を用いる方法により、感度係数を評価すること ができれば、次の式(3.2.1.2)より放射化量Rの不確かさを評価することができる。

 $\boldsymbol{\Sigma}_{R} \approx \boldsymbol{G}(R \leftarrow \Sigma)\boldsymbol{\Sigma}_{\Sigma}\boldsymbol{G}(R \leftarrow \Sigma)^{T}$

$$= \left(\frac{\partial R}{\partial \Sigma_{1}} \quad \frac{\partial R}{\partial \Sigma_{2}} \quad \dots \quad \frac{\partial R}{\partial \Sigma_{n}}\right) \begin{bmatrix} var(\Sigma_{1}) & cov(\Sigma_{1}, \Sigma_{2}) & \cdots & cov(\Sigma_{1}, \Sigma_{n}) \\ cov(\Sigma, \Sigma_{1}) & var(\Sigma_{2}) & cov(\Sigma_{2}, \Sigma_{n}) \\ \vdots & \ddots & \vdots \\ cov(\Sigma_{n}, \Sigma_{1}) & cov(\Sigma_{n}, \Sigma_{2}) & \cdots & var(\Sigma_{n}) \end{bmatrix} \begin{pmatrix} \frac{\partial R}{\partial \Sigma_{1}} \\ \frac{\partial R}{\partial \Sigma_{2}} \\ \vdots \\ \frac{\partial R}{\partial \Sigma_{n}} \end{pmatrix}$$
(3.2.1.2)

חר

ここで、式中の変数は以下のものを示す。

Σ_R: 放射化量の分散共分散データ

 $\Sigma_i: i$ 番目の核反応断面積、 $\Sigma_{\Sigma}: 巨視的核反応断面積の分散共分散データ$

 $G(R \leftarrow \Sigma)$:核特性の感度係数ベクトル

以降の節では、代表的なサンプリング法であるランダムサンプリング法と、代表的な感度 係数を用いた手法である直接法と摂動論を用いた方法について詳細を述べる。

3.2.2 ランダムサンプリング法

3.2.2.1 ランダムサンプリング法を用いた不確かさ評価の流れ

ランダムサンプリング法は、乱数を用いて不確かさに従って核反応断面積に摂動を加え た放射化解析を多数実施し、それらの解析結果を統計処理することで不確かさを評価する 手法である。ランダムサンプリング法における放射化量の不確かさの評価フローは図 3.2.1 のようである。

図 3.2.1 ランダムサンプリングの流れ

図 3.2.1 は具体的には次のような流れとなる。

- (1) 核反応断面積の不確かさ、すなわち断面積分散共分散データに従ってランダムサンプリ ングを実施し多数の断面積セットを作成する。
- (2) それぞれについて、放射化解析を実施する

(3) 得られた解析結果を統計処理することで放射化量の不確かさ(相対標準偏差)を評価する

3.2.2.2 多変量正規乱数の生成

ここでは、分散共分散データに基づいてランダムサンプリングする際に用いられる、多変 量正規乱数について説明する[30]。多変量正規乱数とは、正規乱数を多変量化(多次元化)し たものである。一般に、断面積の確率分布は正規分布に基づく。まずは、簡単な1変量正規 乱数について説明する。

ある確率密度変数 X の確率分布が正規分布に従うとすると、 X の確率密度関数 P(x) は式 (3.2.2.1)で表される。

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
(3.2.2.1)

ここで、式中の変数は以下のものを示す。 μ: 平均、σ²: 分散 この式(3.2.2.1)において、式(3.2.2.2)のように変数変換を行うと、式(3.2.2.3)と変形できる。

$$z = \frac{x - \mu}{\sigma} \tag{3.2.2.2}$$

$$P(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{z^2}{2}\right) \times \left|\frac{dx}{dz}\right|$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{z^2}{2}\right) \times \sigma$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$
(3.2.2.3)

ここで、式中の変数は以下のものを示す。 P(z): 平均 0、分散 1 の標準正規分布。

よって、正規分布に従う乱数xは、式(3.2.2.4)のように標準正規分布に従う乱数zと平均値 μ 、標準偏差 σ より作成することができる。

$$x = \sigma \times z + \mu \tag{3.2.2.4}$$

次に、これを多次元に拡張した多変数正規乱数について説明する。多変量正規分布に従う 確率密度変数ベクトルは次の式(3.2.2.5)のように記述することができる。

$$\mathbf{x} = \mathbf{A}\mathbf{z} + \mathbf{\mu} \tag{3.2.2.5}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}, \mathbf{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}$$
(3.2.2.6)

ここで、式中の変数は以下のものを示す。

z: 標準正規乱数(標準正規分布に従う乱数)ベクトル、μ: xの平均値ベクトル

ある分散共分散行列Cに従うような多次元正規乱数xの期待値E[x]及び分散共分散行列 V[x]は、次の式(3.2.2.7)、式(3.2.2.8)を満たす。

$$\mathbf{E}[\mathbf{x}] = \mathbf{E}[\mathbf{A}\mathbf{z} + \boldsymbol{\mu}] = \mathbf{A}\mathbf{E}[\mathbf{z}] + \mathbf{E}[\boldsymbol{\mu}] = \boldsymbol{\mu}$$
(3.2.2.7)

$$V[\mathbf{x}] = \mathbf{E}[(\mathbf{x} - \mathbf{E}[\mathbf{x}])(\mathbf{x} - \mathbf{E}[\mathbf{x}])^{T}]$$

= $\mathbf{E}[(\mathbf{A}\mathbf{z} + \boldsymbol{\mu} - \boldsymbol{\mu})(\mathbf{A}\mathbf{z} + \boldsymbol{\mu} - \boldsymbol{\mu})^{T}]$
= $\mathbf{E}[(\mathbf{A}\mathbf{z})(\mathbf{A}\mathbf{z})^{T}]$
= $\mathbf{A}\mathbf{E}[\mathbf{z}\mathbf{z}^{T}]\mathbf{A}^{T}$ (3.2.2.8)
= $\mathbf{A}\mathbf{V}[\mathbf{z}]\mathbf{A}^{T}$
= $\mathbf{A}\mathbf{V}[\mathbf{z}]\mathbf{A}^{T}$
= $\mathbf{A}\mathbf{A}^{T} = \mathbf{C}$

ここで、**E**[**z**] = **0**および**V**[**z**] = **I**を用いた。よって、式(3.2.2.9)を満たすような**A**を求めれば 式(3.2.2.5)より、**x**が計算できる。

$$\mathbf{C} = \mathbf{A}\mathbf{A}^T \tag{3.2.2.9}$$

ここで、特異値分解とよばれる行列分解法を用いると、行列Cは一般的に次の式(3.2.2.10)のように分解される(特異値分解法については、3.3.2節で概要を解説)。

$$\mathbf{C} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T \tag{3.2.2.10}$$

ここで、式中の変数は以下のものを示す。

U:n 行 n 列の正規直交行列

D: n 行 p 列の $G(R \leftarrow \Sigma)$ の特異値を対角成分に持つ行列

V: *p* 行 *p* 列の正規直交行列

今、分散共分散行列**C**は対称行列(**C** = **C**^T)であるため、式(3.2.2.10)は式(3.2.2.11)のように表現 される。

$$\mathbf{C} = \mathbf{U}\mathbf{\Sigma}\mathbf{U}^T \tag{3.2.2.11}$$

特異値は非負値より、以下の式(3.2.2.12)のように変形できる。

$$\mathbf{C} = \mathbf{U}\sqrt{\mathbf{\Sigma}}\sqrt{\mathbf{\Sigma}}\mathbf{U}^{T}$$
$$= (\mathbf{U}\sqrt{\mathbf{\Sigma}})(\mathbf{U}\sqrt{\mathbf{\Sigma}})^{T}$$
(3.2.2.12)

よって、式(3.2.2.9)を満たすような平方根行列Aは、以下の式(3.2.2.13)で求めることができる。

$$\mathbf{A} = \mathbf{U}\sqrt{\mathbf{\Sigma}} \tag{3.2.2.13}$$

3.2.2.3 断面積の摂動

ここでは、断面積の摂動について述べる。ランダムサンプリングでは式(3.2.2.14)により、 ある核種の元の微視的核反応断面積に摂動を与える。

$$\sigma_{x,g}^{per} = f_{x,g}\sigma_{x,g} \tag{3.2.2.14}$$

ここで、式中の変数は以下の量を表す。

 $\sigma_{x,g}^{per}$:摂動後微視的核反応断面積、 $f_{x,g}$:摂動因子、 $\sigma_{x,g}$:摂動前微視的核反応断面積、X:核種、g:エネルギー群

摂動因子は式(3.2.2.5)に基づいて作成される。摂動後微視的核反応断面積 $\sigma_{x,g}^{per}$ の平均値は摂動前の元の微視的核反応断面積 $\sigma_{x,g}$ と一致するため、式(3.2.2.15)が成立する。

$$\mathbf{E}[\sigma_{x,g}^{per}] = \sigma_{x,g} \tag{3.2.2.15}$$

よって、式(3.2.2.15)より摂動因子の平均値は式(3.2.2.16)で表される。

$$\mathbf{E}[f_{x,g}] = \mathbf{E}\left[\frac{\sigma_{x,g}^{per}}{\sigma_{x,g}}\right] = \frac{\mathbf{E}[\sigma_{x,g}^{per}]}{\sigma_{x,g}} = 1$$
(3.2.2.16)

また、摂動因子の共分散 $cov(f_{x,g}, f_{x',g'})$ は、以下の式のように計算できる。

$$\begin{aligned} &\operatorname{cov}(f_{x,g}, f_{x',g'}) = \operatorname{cov}\left(\frac{\sigma_{x,g}^{per}}{\sigma_{x,g}}, \frac{\sigma_{x',g'}^{per}}{\sigma_{x',g'}}\right) \\ &= \operatorname{E}\left[\left(\frac{\sigma_{x,g}^{per}}{\sigma_{x,g}} - E\left[\frac{\sigma_{x,g}^{per}}{\sigma_{x,g}}\right]\right) \left(\frac{\sigma_{x',g'}^{per}}{\sigma_{x',g'}} - E\left[\frac{\sigma_{x',g'}^{per}}{\sigma_{x',g'}}\right]\right)\right] \\ &= \operatorname{E}\left[\left(\frac{\sigma_{x,g}^{per} - \sigma_{x,g}}{\sigma_{x,g}}\right) \left(\frac{\sigma_{x',g'}^{per} - \sigma_{x',g'}}{\sigma_{x',g'}}\right)\right] \end{aligned}$$
(3.2.2.17)
$$\\ &= \operatorname{E}\left[\left(\frac{\sigma_{x,g}^{per} - \operatorname{E}[\sigma_{x,g}^{per}]}{\sigma_{x,g}}\right) \left(\frac{\sigma_{x',g'}^{per} - \operatorname{E}[\sigma_{x',g'}^{per}]}{\sigma_{x',g'}}\right)\right] \\ &= \frac{\operatorname{E}[(\sigma_{x,g}^{per} - \operatorname{E}[\sigma_{x,g}^{per}])(\sigma_{x',g'}^{per} - \operatorname{E}[\sigma_{x',g'}^{per}])]}{\sigma_{x',g'}} \end{aligned}$$

$$=\frac{\operatorname{cov}\left(\sigma_{x,g}^{per},\sigma_{x',g'}^{per}\right)}{\sigma_{x,g}\sigma_{x',g'}}$$

式(3.2.2.17)は摂動因子の共分散は対応する断面積の相対共分散であることを意味する。よって、式(3.2.2.16),(3.2.2.17)より式(3.2.2.5)において平均値ベクトルµの全要素の値を1とし、 分散共分散行列Cを断面積の相対分散共分散行列とすることにより断面積摂動因子を作成 することができる。

3.2.2.4 摂動因子の合成

前節では、摂動因子の作成方法について示したが、中性子遮へい計算を実施する際には、 領域の巨視的核反応断面積をインプットとして与える必要がある。そのため、式(3.2.2.14)で 示されるある核種 *x* の微視的核反応断面積に対する摂動因子*f_{x,g}*を用いて、巨視的核反応断 面積に対する摂動因子を式(3.2.2.18)のように作成する必要がある。

$$f_{all,g} = \frac{\sum_{x=1}^{N} (f_{x,g} \times \Sigma_{x,g})}{\sum_{x=1}^{N} \Sigma_{x,g}}$$
(3.2.2.18)

ここで、式中の変数は以下の量を表す。

 $\Sigma_{x,g}$:ある核種 x のエネルギーg 群における巨視的核反応断面積 $f_{all,g}$: エネルギーg 群の巨視的核反応断面積に対する摂動因子

式(3.2.2.18)を用いることにより、領域の巨視的核反応断面積を式(3.2.2.19)のように摂動させる。

$$\Sigma_{all,g}^{per} = f_{all,g} \Sigma_{all,g} \tag{3.2.2.19}$$

ここで、式中の変数は以下の量を表す。

 $\Sigma_{all,a}^{per}$: 摂動後巨視的核反応断面積、 $\Sigma_{all,a}$: 摂動前巨視的核反応断面積

なお、式(3.2.2.18)におけるある核種 x の巨視的核反応断面積 $\Sigma_{x,g}$ については、バックグラン ド断面積を調整し、実際に解析を行う非均質体系における実効断面積を作成している。この 実効断面積の作成手順について、鉄遮蔽体(⁵⁴Fe,⁵⁶Fe,⁵⁷Fe,⁵⁸Fe の混合物)を例として以下に示 す。

鉄 遮 蔽 体 (⁵⁴Fe,⁵⁶Fe,⁵⁷Fe,⁵⁸Fe の 混 合 物) として存在している場合の、各 核 種 (⁵⁴Fe,⁵⁶Fe,⁵⁷Fe,⁵⁸Fe)のバックグランド断面積を調べる。断面積処理コードとして TRANSX を

用いる場合には、鉄遮蔽体の実効断面積を作成した output ファイルに出力されている。

2) 単一核種からなる媒質を考えた場合、バックグラウンド断面積はその媒質の空間的な幾 何形状(平均弦長)のみに依存し、式(3.2.2.20)のように表現される。1)で鉄遮蔽体として存在 している場合の各核種のバックグランド断面積がわかっているため、式(3.2.2.20)に基づき、 各核種の原子数密度を用いて単一核種からなる媒質を考えた場合の平均弦長を評価する。 これにより、鉄遮蔽体として存在している場合と同様なバックグランド断面積の条件下で、 単一核種(⁵⁴Fe,⁵⁶Fe,⁵⁷Fe,⁵⁸Fe)の実効断面積を作成することができる。

$$\sigma_{b,i} = \frac{1}{\ell N_i} \tag{3.2.2.20}$$

ここで、式中の変数は以下のものを表す。

N_i: 巨視的実効断面積を求めたい核種の原子数密度[10²⁴ nuclides/cm³]、ℓ: 平均弦長[cm]

3) 2)で評価した平均弦長を入力として、TRANSX 等の断面積処理コードで各核種 (⁵⁴Fe,⁵⁶Fe,⁵⁷Fe,⁵⁸Fe)の実効断面積を評価する。

3.2.3 感度係数を用いる手法

3.2.3.1 直接法

3.2.3 節では、感度係数を用いた不確かさ評価手法として、直接法と摂動論について述べる。3.2.3.1 節では、直接法について述べる。直接法とは、各入力パラメータに摂動を与えて解析を実施し、感度係数を評価する手法である。感度係数は、一般に差分近似により評価する。差分近似には、片側前方差分や中心差分等がある。式(3.2.3.1)で示されるのは、片側前方差分式である。

$$G_{y,g} \equiv \frac{\partial R}{\partial \Sigma_{y,g}} \approx \frac{R\left(\Sigma_{y,g} + \Delta \Sigma_{y,g}\right) - R(\Sigma_{y,g})}{\Delta \Sigma_{y,g}}$$
(3.2.3.1)

ここで、式中の変数は以下のものを示す。

Σ_{v.g}:g群のある巨視的核反応断面積、y: ある核反応

式(3.2.3.1)より、1 つの感度係数を求めるためには、断面積を摂動させた計算が1回と基準 となる計算が1回必要となる。中心差分では、摂動計算は2回必要となるが精度が片側差 分よりも高い。直接法では、感度係数評価における計算コストは入力パラメータ(巨視的核 反応断面積)に依存するため、入力パラメータが少ない場合に有利な手法である。

3.2.3.2 摂動論を用いる手法

(1 次)摂動論を用いる手法[**5**]は、直接法とは異なるアプローチにより感度係数を評価 する手法である。 g'群のある巨視的核反応断面積 $\Sigma_{y,g'}$ について、 $\Sigma_{y,g'}$ の変化に対する放射 化量Rの相対感度係数 $G_{y,g'}$ は以下のよう示される。

$$G_{y,g'} \equiv \frac{\Sigma_{y,g'}}{R} \frac{\partial R}{\partial \Sigma_{y,g'}}$$
(3.2.3.2)

ここで、ある領域(あるいはメッシュ)の ⁵⁹Co の放射化量 $R \equiv \langle \sigma_{(n,\gamma),g}(\vec{r})\psi_g(\vec{r},\vec{\Omega}) \rangle$ を考える (ここで、ブラケットはエネルギー、中性子の飛行方向、空間の全範囲についての積分であ る)。ただし、 $\psi_g(\vec{r},\vec{\Omega})$ は角度中性子束であり、 $\sigma_{(n,\gamma),g}(\vec{r})$ は式(3.2.3.3)で示される放射化断面 積である。

$$\sigma_{(n,\gamma),g}(\vec{r}) = \sigma_{(n,\gamma),g} \Delta_i(\vec{r}) = \begin{cases} \sigma_{(n,\gamma),g} & \vec{r} \in V_i(b) \pm V_i($$

放射化量 $R \equiv \langle \sigma_{(\mathbf{n},\gamma),g}(\vec{r})\psi_g(\vec{r},\vec{\Omega}) \rangle$ を式(3.2.3.2)に代入し変形すると、式(3.2.3.5)のようになる。

$$G_{y,g'} \equiv \frac{\Sigma_{y,g'}}{R} \frac{\partial R}{\partial \Sigma_{y,g'}} = \frac{\Sigma_{y,g'}}{R} \left(\langle \frac{\partial \sigma_{(n,\gamma),g}}{\partial \Sigma_{y,g'}} \psi_g \rangle + \langle \sigma_{(n,\gamma),g} \frac{\partial \psi_g}{\partial \Sigma_{y,g'}} \rangle \right)$$
(3.2.3.5)

式(3.2.3.5)の右辺第2項より、感度係数を算出するには、摂動にともなう ψ_g の変化量を評価することが必要となる。ここで、中性子エネルギー多群中性子輸送方程式は、式(3.2.3.6)のようになる。

$$\mathbf{A}\psi_g(\vec{r},\vec{\Omega}) = s_g(\vec{r},\vec{\Omega}) \tag{3.2.3.6}$$

ここで、式中の変数は以下のものを示す。

A:式(3.2.3.7)で示される演算子(演算子中の変数の詳細は、2.4.1節を参照のこと)、 $s_a(\vec{r},\vec{\Omega})$:外部中性子源

$$\mathbf{A} \equiv \vec{\Omega} \nabla + \Sigma_{\mathrm{t},g}(\vec{r}) - \int_{4\pi} d\Omega' \sum_{l=0}^{NL} \frac{2l+1}{4\pi} \sum_{g'=1}^{NG} \Sigma_{\mathrm{s}l,g' \to g}(\vec{r}) \sum_{m=-l}^{m=l} R_{lm}(\vec{\Omega}') R_{lm}(\vec{\Omega})$$
(3.2.3.7)

(3.2.3.6)式の中性子輸送方程式について、断面積の摂動が生じた場合、演算子の摂動量を δA 、角度中性子束の摂動量を $\delta \psi_g$ として、式(3.2.3.8)のように変化する。

$$(\mathbf{A} + \mathbf{\delta}\mathbf{A})(\psi_g + \delta\psi_g) = s_g(\vec{r}, \vec{\Omega})$$
(3.2.3.8)

式(3.2.3.6)と式(3.2.3.8)より、二次微小量を無視することで、式(3.2.3.9)の中性子輸送方程式 のバランス方程式を得ることができる。

$$\mathbf{A}\delta\psi_g = -\boldsymbol{\delta}\mathbf{A}\psi_g \tag{3.2.3.9}$$

次に、随伴中性子源として、 $\sigma_{(n,\gamma),g}(\vec{r})$ を設定した随伴輸送方程式である式(3.2.3.10)を考える。

$$\mathbf{A}^{\dagger} \boldsymbol{\gamma}_{g}^{\dagger}(\vec{r}, \vec{\Omega}) = \sigma_{(\mathbf{n}, \boldsymbol{\gamma}), g}(\vec{r})$$
(3.2.3.10)

ここで、式中の変数は以下のものを示す。

 $\gamma_{a}^{\dagger}(\vec{r},\vec{\Omega})$:随伴角度中性子束、 \mathbf{A}^{\dagger} :次の式(3.2.3.11)で示される随伴演算子

$$A^{\dagger} \equiv -\vec{\Omega}\nabla + \Sigma_{t,g}(\vec{r}) - \int_{4\pi} d\Omega' \sum_{l=0}^{NL} \frac{2l+1}{4\pi} \sum_{g'=1}^{NG} \Sigma_{sl,g\to g'}(\vec{r}) \sum_{m=-l}^{m=l} R_{lm}(\vec{\Omega}) R_{lm}(\vec{\Omega}') \qquad (3.2.3.11)$$

随伴演算子及び随伴角度中性子束には、演算子及び角度中性子束との間に式(3.2.3.12)で示 されるような関係がある。

$$\langle \gamma_g^{\dagger} \mathbf{A} \psi_g \rangle = \langle \psi_g \mathbf{A}^{\dagger} \gamma_g^{\dagger} \rangle \tag{3.2.3.12}$$

ここで、式(3.2.3.9)で示される中性子輸送方程式のバランス方程式において、 γ_g^{\dagger} を作用させ、エネルギー、中性子の飛行方向、空間についての積分を行い、さらに式(3.2.3.12)で示される関係性を用いると式(3.2.3.13)が得られる。

$$\langle \gamma_g^{\dagger} \mathbf{A} \psi_g \rangle = \langle \sigma_{(n,\gamma),g} \delta \psi_g \rangle \approx -\langle \gamma_g^{\dagger} \delta \mathbf{A} \psi_g \rangle \tag{3.2.3.13}$$

式(3.2.3.13)を式(3.2.3.5)に代入すると、式(3.2.3.14)が得られる。

$$G_{y,g'} \equiv \frac{\Sigma_{y,g'}}{R} \frac{\partial R}{\partial \Sigma_{y,g'}} = \frac{\Sigma_{y,g'}}{R} \left(\langle \frac{\partial \sigma_{(n,\gamma),g}}{\partial \Sigma_{y,g'}} \psi_g \rangle + \langle \sigma_{(n,\gamma),g} \frac{\partial \psi_g}{\partial \Sigma_{y,g'}} \rangle \right)$$

$$= \frac{\Sigma_{y,g'}}{R} \left(\langle \frac{\partial \sigma_{(n,\gamma),g}}{\partial \Sigma_{y,g'}} \psi_g \rangle - \langle \gamma_g^{\dagger} \frac{\partial \mathbf{A}}{\partial \Sigma_{y,g'}} \psi_g \rangle \right)$$
(3.2.3.14)

式(3.2.3.14)により、ある領域(あるいはメッシュ)の ⁵⁹Co 放射化反応率の感度係数は $\psi \geq \gamma^{\dagger}$ を算出することにより計算できることがわかる。つまり、ある領域の ⁵⁹Co 放射化反応率の不確かさを計算するには、Forward 計算と、ある領域に随伴中性子源として、 $\sigma_{(n,\gamma),g}$ を設定し、断面積行列転置法を用いた Adjoint 計算を行えば、感度係数を算出することができる。直接法では、計算コストは入力パラメータ数(巨視的核反応断面積数)に依存したが、(1次)摂動論では、Forward 計算と各々のメッシュに随伴中性子源を設定した Adjoint 計算を実施する必要がある為、計算コストは出力パラメータ数(構造材のメッシュ分割総数)に依存することとなる。

最後に、実際に数値解析により式(3.2.3.14)を計算する方法について解説する。 $\Sigma_{y,g'}$ として、具体的に (A)巨視的吸収断面積、(B)巨視的散乱断面積の場合について、以下で詳細を述べる。なお、式(3.2.3.14)は角度中性子束及び随伴角度中性子束を用いて感度係数を評価しているが、飛行方向 $\vec{\Omega}$ に関する依存性を正確に取り扱うことは非常に多くの計算機メモリを要することとなるため、APPENDIX.A で紹介する本研究で用いた中性子輸送計算コードにおいては、角度中性子束モーメントを利用して感度係数を評価している(以降でも、角度中性子束モーメントを利用して感度係数の評価方法について解説する)。

(A) Σ_{ν,q}, が巨視的吸収断面積の場合

今、巨視的吸収断面積 $\Sigma_{a,g'}$ が感度係数を評価したい領域 V_j のみで、微小変化を起こすとすると、式(3.2.3.7)で示される演算子Aにおいて、巨視的吸収断面積が含まれるのは、第2項のみであるため、式(3.2.3.14)は角度中性子東モーメントを用いて式(3.2.3.15)のように変形される。

$$G_{\mathbf{a},g',j} \approx -\frac{\Sigma_{\mathbf{a},g',j}}{R} \langle \gamma_g^{\dagger} \frac{\partial \mathbf{A}}{\partial \Sigma_{\mathbf{a},g',j}} \psi_g \rangle = -\frac{\Sigma_{\mathbf{a},g',j}}{R} \langle \gamma_g^{\dagger} \delta_{g,g'} \Delta_j(\vec{r}) \psi_g \rangle$$

$$= -\frac{\Sigma_{\mathbf{a},g',j}}{R} \sum_{l=0}^{NL} (2l+1) \sum_{m=-l}^{l} \int_{V_j} \Gamma_{g',lm}^{\dagger}(\vec{r}) \phi_{g',lm}(r) dV$$
(3.2.3.15)

ここで、式中の変数は以下のものを示す。

 $\delta_{g,g'}$:クロネッカーのデルタ、 ψ_g :角度中性子束(式(3.2.3.16))、 γ_g^{\dagger} :随伴角度中性子束(式 (3.2.3.18))、 $\phi_{g',lm}(r)$:次の角度中性子束モーメント(式(3.2.3.17))、 $\Gamma_{g',lm}^{\dagger}(\vec{r})$:次の随伴角度 中性子束モーメント(式(3.2.3.19))

$$\psi_g(\vec{r},\vec{\Omega}) \approx \sum_{l=0}^{NL} \frac{2l+1}{4\pi} \sum_{m=-l}^{m=l} \phi_{g,lm}(\vec{r}) R_{lm}(\vec{\Omega})$$
(3.2.3.16)

$$\phi_{g,lm}(\vec{r}) \equiv \int_{4\pi} R_{lm}(\vec{\Omega}) \psi_g(\vec{r},\vec{\Omega}) d\Omega \qquad (3.2.3.17)$$

$$\gamma_{g}^{\dagger}(\vec{r},\vec{\Omega}) \approx \sum_{l=0}^{NL} (2l+1) \sum_{m=-l}^{m=l} \Gamma_{g,lm}^{\dagger}(\vec{r}) R_{lm}(\vec{\Omega})$$
 (3.2.3.18)

$$\Gamma_{g,lm}^{\dagger}(\vec{r}) \equiv \frac{1}{4\pi} \int_{4\pi} R_{lm}(\vec{\Omega}) \gamma_g^{\dagger}(\vec{r},\vec{\Omega}) d\Omega \qquad (3.2.3.19)$$

(B) Σ_{y,g}, が巨視的散乱断面積の場合

今、巨視的散乱断面積 Σ_{s,g^*} が感度係数を評価したい領域 V_j のみで、微小変化を起こすとする。一般に、巨視的散乱断面積 $\Sigma_{s,g^*,j}$ の微小変化は、断面積の大きさが全体的に変化するだけであり($\Sigma_{s,g^*,j} + \delta \Sigma_{s,g^*,j}$)、あるエネルギー・ある方向から別のエネルギー・別の方向に散乱される確率自体は変化しないと考えられるため、次の式(3.2.3.20)が成立する。

$$\Sigma_{\mathrm{sl},g^* \to g} + \delta \Sigma_{\mathrm{sl},g^* \to g'} = \frac{\Sigma_{\mathrm{s},g^*,j} + \delta \Sigma_{\mathrm{s},g^*,j}}{\Sigma_{\mathrm{s},g^*,j}} \Sigma_{\mathrm{sl},g^* \to g'} = \left(1 + \frac{\delta \Sigma_{\mathrm{s},g^*,j}}{\Sigma_{\mathrm{s},g^*,j}}\right) \Sigma_{\mathrm{sl},g^* \to g'}$$
(3.2.3.20)

よって、式(3.2.3.20)より式(3.2.3.21)が成立する。

$$\delta \Sigma_{\mathrm{sl},g^* \to g'} = \frac{\Sigma_{\mathrm{sl},g^* \to g'}}{\Sigma_{\mathrm{s},g^*,j}} \delta \Sigma_{\mathrm{s},g^*,j}$$
(3.2.3.21)

式(3.2.3.7)で示される演算子Aにおいて、巨視的吸収断面積が含まれるのは、第2項及び第3 項(散乱中性子源項)であるため、式(3.2.3.21)の関係性を踏まえ式(3.2.3.14)は角度中性子束モ ーメントを用いて式(3.2.3.15)のように変形される。

$$\begin{aligned} G_{s,g',j} &\approx -\frac{\Sigma_{s,g^*,j}}{R} \langle \gamma_g^{\dagger} \frac{\partial \mathbf{A}}{\partial \Sigma_{s,g^*,j}} \psi_g \rangle \\ &= \frac{\Sigma_{s,g^*,j}}{R} \left(\langle \int_{4\pi} d\Omega' \sum_{l=0}^{NL} \sum_{m=-l}^{m=l} \frac{2l+1}{4\pi} \frac{\Sigma_{sl,g^* \to g}(\vec{r})}{\Sigma_{s,g^*,j}(\vec{r})} \Delta_j(\vec{r}) \gamma_g^{\dagger} \psi_{g^*} R_{lm}(\vec{\Omega}') R_{lm}(\vec{\Omega}) \rangle \\ &- \langle \gamma_g^{\dagger} \delta_{g,g^*} \Delta_j(\vec{r}) \psi_g \rangle \right) \end{aligned}$$
(3.2.3.22)
$$= \left(\frac{1}{R} \sum_{g=1}^{NG} \sum_{l=0}^{NL} \sum_{m=-l}^{m=l} (2l+1) \Sigma_{sl,g^* \to g}(\vec{r}) \int_{V_j} \Gamma_{g,lm}^{\dagger}(\vec{r}) \phi_{g^*,lm}(\vec{r}) dV \right) \\ &- \left(\frac{\Sigma_{s,g^*,j}}{R} \sum_{l=0}^{NL} \sum_{m=-l}^{l} (2l+1) \int_{V_j} \Gamma_{g^*,lm}^{\dagger}(\vec{r}) \phi_{g^*,lm}(\vec{r}) dV \right) \end{aligned}$$

式(3.2.3.22)において、第1項は巨視的散乱断面積の微小変化により散乱中性子源が変化する項、第2項は巨視的散乱断面積の微小変化により巨視的全断面積が変化する項をそれぞれ表している。

以上より、式(3.2.3.14)を数値解析で計算する場合、感度係数を求める断面積の種類により(吸収断面積か散乱断面積か)、評価方法が異なるので注意する必要がある。

3.2.4 従来の不確かさ評価手法における課題

3.2.2節及び3.2.3節では、従来の不確かさ定量評価手法として、ランダムサンプリング法、 直接法、摂動論を用いる方法について詳細を述べた。各々の手法の計算コストを再度、表 3.2.1にまとめる。

不確かさ評価手法	計算コスト
ランダムサンプリング法	サンプル数に依存
直接法	入力パラメータ数に依存
(1 次)摂動論	出力パラメータ数に依存

表 3.2.1 従来の不確かさ定量評価手法の計算コスト

原子炉の放射化量を精度よく数値シミュレーションにより評価するには、空間的に大きな3 次元体系において、多群化の際の誤差低減のため詳細群で非等方散乱を考慮して中性子遮 へい計算を実施する必要がある。1回の中性子遮へい計算は非常に時間がかかり、不確かさ 評価に多数の中性子遮へい計算を必要とする手法は、計算コストの観点より現実的ではな い。そのため、入出力パラメータが膨大となる放射化解析において、直接法と摂動論を用い る方法は不確かさ評価手法として実用的ではない。また、ランダムサンプリング法は、計算 精度がサンプル数に依存するため、統計誤差の観点より、数百サンプル程度のサンプルを計 算することが求められるため、同じく適用が困難である。また、ランダムサンプリング法で は、のように感度を評価する方法は提案されているものの、感度係数を精度よく評価するこ とはできない[6]。

現時点の計算機の性能で、現実的な体系・計算条件において放射化量の不確かさ評価を実施するには、以下の2つのアプローチが考えられる。

・高速な中性子輸送計算手法の開発及び実装

・低計算コストで実施可能な不確かさ定量評価手法の開発

本研究では、2つめの「低計算コストで実施可能な不確かさ定量評価手法の開発」に着目し、 以降の節で Reduced Order Modeling と呼ばれる手法を放射化解析へ応用する手法について詳 細を述べる。

3.3 ROM を用いた新たな放射化量の不確かさ定量評価手法

3.3.1 ROM の概要

本節では、Reduced Order Modeling (ROM)について述べる[7-13]。一般的に ROM とは、複 雑なモデルをできるだけ誤差が小さくなるように数学的に簡易なモデルで近似することを 示す。本研究においては、ROM の考え方を感度係数評価に適用することで、感度係数評価 におけるモデルを単純化(低次元化)し、少ない解析数で近似的な感度係数を評価する。本節 では、簡単な具体例を用いながら ROM の概念について解説する。

今、図 3.3.1 のような 5 箇所(位置x₁,x₂,x₃,x₄,x₅)の構造材位置の放射化量 (R₁,R₂,R₃,R₄,R₅)の感度係数について検討を行うこととする。以降、ある巨視的核反応断面 積を摂動させ感度解析を行った場合、その巨視的核反応断面積に対するすべての構造材位 置(本例題では 5 箇所)の放射化量の感度係数が得られることは自明であるとし議論を進め る。

$$\boldsymbol{g}_{\boldsymbol{x}_1} = \left(\frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_1}, \frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_2}, \frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_3}\right)$$
(3.3.1.1)

まず、式(3.3.1.1)を用いて感度係数ベクトルの向きの意味について考察する。巨視的核反応 断面積を摂動させたときの放射化量 R_{x_1} の摂動量は、2次微小量を無視すると、感度係数ベ クトル g_{x_1} を用いて式(3.3.1.2)のように示される。

$$\Delta R_1 = \boldsymbol{g}_{\boldsymbol{x}_1} \cdot \Delta \boldsymbol{\Sigma} = \left(\frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_1}, \frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_2}, \frac{\partial R_{\boldsymbol{x}_1}}{\partial \boldsymbol{\Sigma}_3}\right) \begin{pmatrix}\Delta \boldsymbol{\Sigma}_1\\\Delta \boldsymbol{\Sigma}_2\\\Delta \boldsymbol{\Sigma}_3\end{pmatrix}$$
(3.3.1.2)

ここで、式中の変数は以下のものを示す。

 ΔR_1 : 放射化量 R_1 の摂動量、 $\Delta \Sigma = (\Delta \Sigma_1, \Delta \Sigma_2, \Delta \Sigma_3)^T$: 巨視的核反応断面積の変動ベクトル

式(3.3.1.2)は内積であるため、式(3.3.1.3)のように変形することができる。

$$\Delta R_{x_1} = \boldsymbol{g}_{x_1} \cdot \Delta \boldsymbol{\Sigma} = \| \boldsymbol{g}_{x_1} \| \| \Delta \boldsymbol{\Sigma} \| \cos \theta \qquad (3.3.1.3)$$

ここで、式中の変数は以下のものを示す。

 θ (0 $\leq \theta < 2\pi$): g_{x_1} と $\Delta\Sigma$ がなす角、||a||: aの L2 ノルム

式(3.3.1.3)から、放射化量 R_1 の摂動量 ΔR_1 は $\theta = 0$ or π のとき、最大値をとることがわかる。 つまり、巨視的核反応断面積の変動ベクトル $\Delta \Sigma$ としては様々考えられるが、 $||\Delta \Sigma||$ を一定と するならば、 $\theta = 0$ or π の向きに $\Delta \Sigma$ を変化させると、 ΔR_{x_1} の変化量が最大となる。すなわち、 放射化量 R_1 の感度係数ベクトル g_{x_1} の向き自体が、 ΔR_{x_1} の変化量が最大となる巨視的核反応 断面積の変動ベクトルの方向 $\Delta \Sigma$ を示している。

以上のことを念頭に、5 箇所の構造材位置の放射化量(*R_{x1}*, *R_{x2}*, *R_{x3}*, *R_{x4}*, *R_{x5}*)の感度係数ベクトルを3次元空間上(巨視的核反応断面積は3種類)に図示した場合、次の図 3.3.2 のようなイメージとなったとする。

図 3.3.2 5 つの感度係数ベクトルのイメージ(ROM が適用不可)

図 3.3.2 のように、5 つの感度係数ベクトルが様々な方向を向き、5 つの感度係数ベクトル からなる空間が3 次元的である場合には、後述する ROM と呼ばれる手法は効力を発揮し ない。ROM が適用できるのは、例えば、図 3.3.3 のように、5 つの感度係数ベクトルが青 色の領域で示した2次元平面上におおよそ存在していると近似できる場合である。これ は、5 つ放射化量の感度係数ベクトルの方向、すなわち、5 つの放射化量の摂動量が最も 大きくなる巨視的核反応断面積の変動ベクトルの方向が2次元平面上に存在することによ る。

図 3.3.3 5 つの感度係数ベクトルのイメージ(ROM が適用可能)

そこで、図 3.3.3 における、5つの感度係数ベクトルを ROM により評価することを考える。

直接法では、3.2.3.1 節で述べたようにある一つの巨視的反応断面積を摂動させた摂動計算 を実施するが、ROM を用いた感度解析では、複数の巨視的反応断面積を同時に摂動させた 摂動計算を実施することとなる。この複数の巨視的反応断面積の摂動の仕方としては様々 な方法が考えられる。ここで、図 3.3.3 の 2 次元平面に直交する方向、つまり、5 つの感度 係数ベクトルとの内積がおおよそ 0 となるような巨視的核反応断面積の変動ベクトルΔΣ₁ を考え摂動計算を実施すると、式(3.3.1.4)のように放射化量の摂動量はほぼ 0 となる。

$$\Delta R_{x_1} = \boldsymbol{g}_{x_i} \cdot \Delta \boldsymbol{\Sigma}_{\perp} = 0 \qquad (i = 1, 2, 3, 4, 5) \tag{3.3.1.4}$$

このような感度解析は、感度係数の大きさに関する情報を何もたらさないので感度係数評価には意味を無さない。そこで、ROMでは、2次元平面上に巨視的核反応断面積の変動ベクトル $\Delta\Sigma$ を設定し、摂動計算をする。具体的には、図 3.3.3の2次元平面上で、5つの感度係数ベクトルの射影(の合計)が最も大きくなる軸: v_1 及び v_1 と直交する軸: v_2 を考え(詳細は次節で述べる)、各々軸に沿った方向の巨視的核反応断面積の変動ベクトル $\Delta\Sigma_{v_1},\Delta\Sigma_{v_2}$ を設定する。2次元平面上の軸 v_1 及び v_2 と巨視的核反応断面積の変動ベクトル $\Delta\Sigma_{v_1},\Delta\Sigma_{v_2}$ を図示すると図 3.3.4のようになる。

図 3.3.4 2次元平面上の軸 v_1 及び v_2 巨視的核反応断面積の変動ベクトル $\Delta \Sigma_{V_1}, \Delta \Sigma_{V_2}$

また、図 3.3.4 に対して、軸: **v**₁、**v**₂に着目し、5 つの感度係数ベクトルを**v**₁、**v**₂で構成される 2 次元平面上で見た図について図 3.3.5 に示す。

図 3.3.5 感度係数ベクトルを2次元平面上で見た図

図 3.3.5 において、図中の記号は次の意味である。 $\Delta \alpha_1, \Delta \alpha_2$: $\Delta \Sigma_{V_1}, \Delta \Sigma_{V_2} \mathcal{O} v_1, v_2$ 方向への変動量。 $\Delta \Sigma_{V_1}, \Delta \Sigma_{V_2}$ と式(3.3.1.5)のような関係がある。 ただし、 $v_j = \left(\frac{\partial \Sigma_1}{\partial \alpha_j}, \frac{\partial \Sigma_2}{\partial \alpha_j}, \frac{\partial \Sigma_3}{\partial \alpha_j}\right)^T$ は単位ベクトルであるとする。

$$\Delta \Sigma_{V_j} = \begin{pmatrix} \frac{\partial \Sigma_1}{\partial \alpha_j} \\ \frac{\partial \Sigma_2}{\partial \alpha_j} \\ \frac{\partial \Sigma_3}{\partial \alpha_j} \end{pmatrix} \Delta \alpha_j \qquad (3.3.1.5)$$
$$= v_j \Delta \alpha_j \qquad (j = 1, 2)$$

 $g'_{x_1}, g'_{x_2}, g'_{x_3}, g'_{x_4}, g'_{x_5}$: 2 次元平面上で考えた $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ に対応する。2 次元である ので、成分は 2 つ $(\frac{\partial R_{x_i}}{\partial \alpha_1}, \frac{\partial R_{x_i}}{\partial \alpha_2})$ 。 $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ と次の式(3.3.1.6)のような関係がある。

$$\boldsymbol{g}_{\boldsymbol{x}1}' = \left(\frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \alpha_{1}}, \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \alpha_{2}}\right)$$

$$= \left(\frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{1}} \frac{\partial \Sigma_{1}}{\partial \alpha_{1}} + \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{2}} \frac{\partial \Sigma_{2}}{\partial \alpha_{1}} + \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{3}} \frac{\partial \Sigma_{3}}{\partial \alpha_{1}}, \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{1}} \frac{\partial \Sigma_{1}}{\partial \alpha_{2}}\right)$$

$$+ \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{2}} \frac{\partial \Sigma_{2}}{\partial \alpha_{2}} + \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{3}} \frac{\partial \Sigma_{3}}{\partial \alpha_{2}}\right)$$

$$= \left(\frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{1}} \quad \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{2}} \quad \frac{\partial R_{\boldsymbol{x}_{i}}}{\partial \Sigma_{3}}\right) \left(\begin{array}{c} \frac{\partial \Sigma_{1}}{\partial \alpha_{1}} & \frac{\partial \Sigma_{1}}{\partial \alpha_{2}}\\\\ \frac{\partial \Sigma_{2}}{\partial \alpha_{1}} & \frac{\partial \Sigma_{2}}{\partial \alpha_{2}}\\\\ \frac{\partial \Sigma_{3}}{\partial \alpha_{1}} & \frac{\partial \Sigma_{3}}{\partial \alpha_{2}}\end{array}\right)$$

$$(3.3.1.6)$$

$= g_{x_i}(v_1 \quad v_2) \ (i = 1, 2, 3, 4, 5)$

今、 $g'_{x_1}, g'_{x_2}, g'_{x_3}, g'_{x_4}, g'_{x_5}$ は成分が2つであるので、 v_1 方向に Δa_1 だけ変動させた摂動計 算と、 v_2 方向に Δa_2 だけ変動させた摂動計算の2回で評価することが可能である。なお、 実際には、式(3.3.1.5)より、巨視的核反応断面積の変動ベクトル $\Delta \Sigma_{v_1}, \Delta \Sigma_{v_2}$ に換算し摂動計 算を実施する。3次元空間と2次元平面の関係性、すなわち、 v_1, v_2 がわかっているなら ば、式(3.3.1.6)より $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ を評価することができる(詳細については、3.3.2 節 で述べる)。

以上をまとめると、ROM を用いた感度解析では、5 つの感度係数ベクトルが成す 2 次元 平面上の軸 v_1, v_2 (以降、 v_1, v_2 が成す空間のことを Active Subspace、AS と呼ぶ)を考え、そ の方向にのみ摂動計算を実施することで、直接法では 3 回の摂動計算を要した感度解析 を、2 回に圧縮することができた。なお、5 つの感度係数ベクトル $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ の 2 次元平面に直交する成分は、ROM では考慮できず、最終的には感度係数ベクトルの誤差 となる。

上記の方法では、留意すべき点がある。Active Subspace というのは、本来は感度係数ベクトル $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ から算出するものである。すなわち、ROM を用いて低コストで感度係数を評価するためには、目的とする感度係数ベクトルを評価しなければならないという自己撞着に陥る。そこで、一般的には、比較的低計算コストで実施できる簡易モデル等から、近似的な AS を構築する[9,11,13]。

放射化解析においては入出力パラメータ共に例題よりも次元が非常に多いが、ROM の考 え方は、次元が増えても同じである。ROM を用いた感度解析の計算コストとしては、AS の 構築のコスト及び摂動計算のコストとなるので、構造材の放射化量の感度係数ベクトルが 図 3.3.3 のように ROM が適用しやすい状況であり、AS の構築を低計算コストで実施する ことができれば、放射化解析へ ROM を適用することにより、感度解析の計算コストを大き く低減させることが期待できる。

3.3.2 ROM の原理

3.3.1 節では ROM の概要及び空間的なイメージについて具体例を用いて述べたが、本節ではより一般的なモデルに対して、数学的な視点により ROM の原理について解説する [13]。

m 種類の放射化量(*m* 箇所の放射化量) $\mathbf{R} = (R_{x_i}, \dots R_{x_m})^T \ge n$ 種類の巨視的核反応断面積 $\Sigma = (\Sigma_1, \dots \Sigma_n)^T$ について考える(ただし、m > nであるとする)。式(3.3.2.2)で示される、ある 位置 x_i の放射化量の感度係数ベクトル g_{x_i} (行ベクトル)を行方向へならべた*m* 行 *n* 列の感 度係数行列 $G(\mathbf{R} \leftarrow \Sigma)$ を用いることにより、放射化量の変化量は次の式(3.3.2.1)のように表 すことができる。

$$\Delta \boldsymbol{R} = \boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\Sigma}) \Delta \boldsymbol{\Sigma} \tag{3.3.2.1}$$

$$\boldsymbol{G}(R \leftarrow \Sigma) = \begin{pmatrix} \boldsymbol{g}_{x_1} \\ \boldsymbol{g}_{x_2} \\ \vdots \\ \boldsymbol{g}_{x_m} \end{pmatrix}$$
(3.3.2.2)

ここで、式中の変数は以下のものを示す。

 $\Delta \mathbf{R} = (\Delta R_{x_1}, \dots \Delta R_{x_m})^T$: 放射化量の変動ベクトル、 $\Delta \Sigma = (\Delta \Sigma_1, \dots \Delta \Sigma_n)^T$: 巨視的核反応断面 積の変動ベクトル

$$g_{x_i} = \left(\frac{\partial R_{x_i}}{\partial \Sigma_1}, \frac{\partial R_{x_i}}{\partial \Sigma_2}, \cdots, \frac{\partial R_{x_i}}{\partial \Sigma_n}\right)$$
: ある位置 x_i の放射化量の感度係数ベクトル

まず、m 種類の放射化量の厳密な AS の構築方法と基底方向への摂動に対する感度係数 行列の評価方法について述べる。m 種類の放射化量の感度係数ベクトルの厳密な AS は式 (3.3.2.2)で示される感度係数 $G(R \leftarrow \Sigma)$ について次の式(3.3.2.3)のように特異値分解と呼ばれ る行列分解法を実施することで評価することができる。

$$\boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\Sigma}) = \boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^t \tag{3.3.2.3}$$

ここで、式中の変数は以下のものを示す。

U:m 行 m 列の正規直交行列

D: *m* 行 *n* 列の**G**($R \leftarrow \Sigma$)の特異値($d_1, d_2, d_3 \cdots d_n$)を対角成分に持つ行列。特異値は上から大きい順に並ぶ。

V:n 行 n 列の正規直交行列

特異値分解は、簡潔に述べると、行列の特徴を抜き出す操作であり、Vは $G(R \leftarrow \Sigma)$ の行べ

クトルに対する正規直交行列、**U**は**G**($R \leftarrow \Sigma$)の列ベクトルに対する正規直交行列を意味している。AS の正規直交基底(3.3.1 節における軸)は、 $V = (v_1, v_2 \cdots v_n)$ の縦ベクトル v_j に該当する。AS の正規直交基底がわかれば、AS 上の巨視的核反応断面積の変動ベクトル $\Delta \Sigma_{AS}$ は、基底方向への摂動量を成分としたベクトル $\Delta \alpha$ を用いて、式(3.3.2.4)のように表せられる。

$$\Delta \boldsymbol{\Sigma}_{AS} = \boldsymbol{V} \Delta \boldsymbol{\alpha} = (\boldsymbol{v}_1 \ \boldsymbol{v}_2 \cdots \boldsymbol{v}_n) \begin{pmatrix} \Delta \alpha_1 \\ \Delta \alpha_2 \\ \vdots \\ \Delta \alpha_n \end{pmatrix}$$
(3.3.2.4)

 $= \Delta \alpha_1 \boldsymbol{v_1} + \Delta \alpha_2 \boldsymbol{v_2} + \dots + \Delta \alpha_n \boldsymbol{v_n}$

ここで、式中の変数は以下のものを示す。 $\Delta \boldsymbol{\alpha} = \begin{pmatrix} \Delta \alpha_1 \\ \Delta \alpha_2 \\ \vdots \\ \Delta \alpha_n \end{pmatrix} : \Delta \sigma_j \wr \boldsymbol{v}_j 方向の摂動量.$

また、ある基底方向 v_j への巨視的核反応断面積の変動ベクトル $\Delta \Sigma_{v_j}$ は式(3.3.2.5)のように表現される。

$$\Delta \Sigma_{\nu_1} = \Delta \alpha_j \nu_j \tag{3.3.2.5}$$

式(3.3.2.6)で示される基底方向への摂動に対する放射化量の感度係数行列 $G(R \leftarrow \alpha)$ は、基底方向への変動量を設定した後、式(3.3.2.5)より巨視的核反応断面積の変動ベクトルに換算し感度解析を実施することで評価できる。

$$\boldsymbol{G}(R \leftarrow \alpha) = \begin{pmatrix} \boldsymbol{g}'_{x_1} \\ \boldsymbol{g}'_{x_2} \\ \vdots \\ \boldsymbol{g}'_{x_m} \end{pmatrix}$$
(3.3.2.6)

ここで、式中の変数は以下のものを示す。

 $g'_{x_i} = \left(\frac{\partial R_{x_i}}{\partial \alpha_1}, \frac{\partial R_{x_i}}{\partial \alpha_2}, \cdots, \frac{\partial R_{x_i}}{\partial \alpha_n}\right)$: AS におけるある位置 x_i の放射化量の感度係数ベクトル

次に、各基底方向への感度解析の影響度について考える。式(3.3.2.3)、式(3.3.2.4)を式 (3.3.2.1)に代入することで放射化量の変動ベクトル ΔR は次の式(3.3.2.7)のように変形することができる。ただし、 $V^tV = I$ であることを使用した(Iは単位行列)。

$$\Delta R = G(R \leftarrow \Sigma) \Delta \Sigma_{AS}$$

= $U D V^t \Delta \Sigma_{AS}$
= $U D V^t V \Delta \alpha$
= $U D \Delta \alpha$ (3.3.2.7)

ここで、行列**D**行において特異値が相対的に大きい上からr個までの成分を残し、それ以 外の相対的に十分小さな特異値の成分を0とした行列**D**_rを考えると、式(3.2.2.6)は式 (3.3.2.8)のように近似的に表現できる。

$$\Delta \boldsymbol{R} = \boldsymbol{U} \boldsymbol{D} \Delta \boldsymbol{\alpha}$$

$$\approx \boldsymbol{U} \boldsymbol{D}_r \Delta \boldsymbol{\alpha}$$
(3.3.2.8)

式(3.3.2.8)より、 $\Delta \alpha$ の最初の r 個の要素以外は放射化量の変動ベクトルに影響を与えない。 つまり、正規直交行列Vの最初からr列目までの基底の方向にのみ感度を示す。また、行列 D_r において、特異値は大きい順に並んでいるため、 v_1, v_2 …の基底の方向の順に大きな感度 を示すことがわかる。以降、正規直交行列Vの最初からr列目までの基底を取り出した正規 直交行列を V_r と表す。

最後に、基底方向への摂動に対する感度係数行列 $G(R \leftarrow \alpha)$ から巨視的反応断面積の摂動 に対する感度係数行列 $G(R \leftarrow \Sigma)$ を評価する方法について考える。放射化量の変動ベクトル ΔR は V_r を用いることで、式(3.3.2.7)と同様に式(3.3.2.9)のように変形できる。

$$\Delta \mathbf{R} = \mathbf{G} (\mathbf{R} \leftarrow \Sigma) \Delta \Sigma_{AS}$$

$$\approx \mathbf{U}_{\mathbf{r}} \mathbf{D}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}^{t} \Delta \Sigma_{AS}$$

$$= \mathbf{U}_{\mathbf{r}} \mathbf{D}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}^{t} \mathbf{V}_{\mathbf{r}} \Delta \alpha$$

$$= \mathbf{U}_{\mathbf{r}} \mathbf{D}_{\mathbf{r}} \Delta \alpha$$
(3.3.2.9)

また、放射化量の変動ベクトル ΔR は基底方向への摂動量を成分としたベクトル $\Delta \alpha$ を用いて式(3.3.2.10)のように示される。

$$\Delta \boldsymbol{R} = \boldsymbol{G}(\boldsymbol{R} \leftarrow \alpha) \Delta \boldsymbol{\alpha} \tag{3.3.2.10}$$

式(3.3.2.9)と式(3.3.2.10)より、 $G(R \leftarrow \alpha)$ は式(3.3.2.11)のように示される。

$$\boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\alpha}) = \boldsymbol{U}_{\boldsymbol{r}} \boldsymbol{D}_{\boldsymbol{r}} \tag{3.3.2.11}$$

以上により、巨視的反応断面積の摂動に対する感度係数行列 $G(R \leftarrow \Sigma)$ は、巨視的反応断面積の摂動に対する感度係数行列 $G(R \leftarrow \alpha)$ を用いて次の式(3.3.2.12)のように評価することができる。

$$\boldsymbol{G}(R \leftarrow \Sigma) = \boldsymbol{U}_r \boldsymbol{D}_r \, \boldsymbol{V}_r^t = \boldsymbol{G}(R \leftarrow \alpha) \boldsymbol{V}_r^t \tag{3.3.2.12}$$

ここで、式(3.3.2.6)で示された基底方向への摂動に対する放射化量の感度係数行列 $G(R \leftarrow \alpha)$ について、式(3.3.2.13)のように表現する。

$$G(R \leftarrow \alpha) = (g'_{\nu_1} g'_{\nu_2} \cdots g'_{\nu_n})$$
(3.3.2.13)

ここで、式中の変数は以下のものを示す。

 $g'_{v_j} = \left(\frac{\partial R_{x_1}}{\partial \alpha_j}, \frac{\partial R_{x_2}}{\partial \alpha_j}, \cdots, \frac{\partial R_{x_m}}{\partial \alpha_j}\right)^T$:基底方向 v_j への摂動に対する放射化量感度係数ベクトル

式(3.3.2.13)を式(3.3.2.12)に代入すると、式(3.3.2.14)のようになる。

$$\boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\Sigma}) = \boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\alpha})\boldsymbol{V}_{r}^{t} = \left(\boldsymbol{g}_{v_{1}}^{\prime} \, \boldsymbol{g}_{v_{2}}^{\prime} \cdots \boldsymbol{g}_{v_{n}}^{\prime}\right) \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \vdots \\ \boldsymbol{v}_{r} \end{pmatrix}$$

$$= \boldsymbol{g}_{v_{1}}^{\prime} \boldsymbol{v}_{1} + \, \boldsymbol{g}_{v_{2}}^{\prime} \boldsymbol{v}_{2} + \cdots + \boldsymbol{g}_{v_{n}}^{\prime} \boldsymbol{v}_{r} \qquad (3.3.2.14)$$

式(3.3.2.14)より、式(3.3.2.12)が基底方向 v_j への摂動に対する放射化量感度係数ベクトル g'_{v_j} を v_i により座標変換していることが理解できる。

3.3.3 放射化解析への ROM の適用

3.3.1 節では、ROM の概要について述べたが、放射化解析へ ROM を適用することが効 果的となるのは、放射化量の感度係数ベクトルからなる空間が図 3.3.3 のように低次元で ある場合である。また。3.3.2 節では、m 種類の放射化量の厳密な AS の構築方法について 述べたが、ROM を用いて効率的に放射化量の感度係数を評価するには、低い計算コスト で近似的な放射化量の感度係数ベクトルの Active Subspace を求める必要がある。本節で は、主に放射化解析への ROM の適用性及び低計算コストで近似的な AS を構築する方法 について解説する。

まず、放射化解析への ROM の適用性を検討するため、3.3.1 節で用いた例題を用いて放射化量の感度係数ベクトルの特徴を把握する(3 種類の巨視的核反応断面積、5 種類(5 箇所)

の放射化量を考慮。図 3.3.6 に再掲)。

位置 x_1, x_5 の放射化量の感度係数ベクトル g_{x_1}, g_{x_5} が既に分かっている場合、 $g_{x_2}, g_{x_3}, g_{x_4}$ は近似的に式(3.3.3.1)で示されるようにこれらの感度係数ベクトルの線形結合でおおよそ再現できると考えられる(特に、 x_1 - x_5 の距離が短いほど、近似精度は高いと考えられる)。

$$g_{x_2} \approx c_2 g_{x_1} + (1 - c_2) g_{x_5}$$

$$g_{x_3} \approx c_3 g_{x_1} + (1 - c_3) g_{x_5}$$

$$g_{x_4} \approx c_4 g_{x_1} + (1 - c_4) g_{x_5}$$

(3.3.3.1)

ここで、式中の変数は以下のものを示す。

 c_2, c_3, c_4 :線形結合における係数 $(0 \le c_2 \le 1, 0 \le c_3 \le 1, 0 \le c_4 \le 1)$

式(3.3.3.1)が意味する重要な事は、 $g_{x_2}, g_{x_3}, g_{x_4}$ は g_{x_1}, g_{x_5} が構成する2次元平面上に存在 すると近似できるということである。つまり、図示すると、3.3.1節で解説した図 3.3.3 で 示したイメージ図になるということである(図 3.3.7 に再掲)。

以上により、放射化解析へ ROM を適用することで、感度解析における計算コストを削減 できる可能性があることが示唆された。

次に、低計算コストで近似的な AS を構築する方法について検討する。式(3.3.3.1)が成立 する場合、感度係数行列 $G(R \leftarrow \Sigma)$ は次の式(3.3.3.2)のようになる。

$$\boldsymbol{G}(R \leftarrow \Sigma) \approx \begin{pmatrix} \boldsymbol{g}_{x_1} \\ c_1 \boldsymbol{g}_{x_1} + c_2 \boldsymbol{g}_{x_5} \\ c_3 \boldsymbol{g}_{x_1} + c_4 \boldsymbol{g}_{x_5} \\ c_5 \boldsymbol{g}_{x_1} + c_6 \boldsymbol{g}_{x_5} \\ \boldsymbol{g}_{x_5} \end{pmatrix}$$
(3.3.2)

式(3.3.3.2)を特異値分解しAS(正規直交行列V)を特定することは、式(3.3.3.2)が1次従属であるため、式(3.3.3.3)を特異値分解しAS(正規直交行列V)を評価することと実質的に同じことになる。

$$\boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\Sigma}) \approx \begin{pmatrix} \boldsymbol{g}_{\boldsymbol{X}_1} \\ \boldsymbol{g}_{\boldsymbol{X}_{\boldsymbol{\Sigma}}} \end{pmatrix}$$
(3.3.3)

よって、5箇所の感度係数ベクトル $g_{x_1}, g_{x_2}, g_{x_3}, g_{x_4}, g_{x_5}$ のASを評価するには、実質的に は2箇所の g_{x_1}, g_{x_5} がわかっていればよい。一部の位置の放射化量の感度係数ベクトル は、3.2.3節で述べたように随伴計算を利用し(1次)摂動論を用いれば評価できため、ASを 効率的に低計算コストで構築することができると考えられる。

以上の手法を一般的なモデルに適用するには、次のような手順で実施する。

- 前密なASをできるだけ再現するように、一部の体系の代表点(例題では、x₁,x₅に 相当。代表点の取り方については、4章を参照)を設定
- 2) (1次)摂動論を用いて代表点における放射化量の感度係数ベクトルを評価
- 3) 2)で評価された代表点における放射化量の感度係数ベクトルより感度係数行列を 作成し、特異値分解をすることで、低計算コストで近似的な AS を構築

なお、以上のように作成された AS には代表点における放射化量の感度係数の情報しかな く、ROM では代表点以外の位置の放射化量の感度係数を再現することはできないと感じ られる。しかし、ROM では、3.3.1 節及び 3.3.2 節で述べたように、AS の基底方向への感 度解析を実施し、行列 $G(R \leftarrow \alpha)$ を評価する。ある基底方向への感度解析において得られる のは、すべての位置の放射化量の感度である。つまり、 $G(R \leftarrow \alpha)$ はすべての位置の放射化 量に関する情報を含んでいるため、式(3.3.2.12)により座標変換し評価された $G(R \leftarrow \Sigma)$ は、 すべての位置の放射化量の感度係数を再現することになる。以上の内容のイメージを図示 するならば、 図 3.3.8 のようになる。

$G(R \leftarrow \Sigma) \approx G(R \leftarrow \alpha) V_r^t$ (1) (2) (3)

(1,2:すべての位置の感度係数の情報)

③:代表点の感度係数の情報

図 3.3.8 式(3.3.2.12)の代表点以外の情報を反映するイメージ図

3.4 不確かさ低減手法

3.4.1 不確かさ低減手法の概要

3.4 節では、放射化解析における、不確かさ低減手法であるバイアス因子法[14,15]につい て述べる。バイアス因子法は、放射化量の解析値の相関関係と実際に測定された測定値を用 いて、解析値を補正し不確かさを低減させる手法である。バイアス因子法には、様々な手法 が提案されているが、3.4.1 節では、最もイメージのしやすいランダムサンプリング法を用 いたバイアス因子法[15]について簡単な例を用いて概要を説明する。まず、図 3.4.1 で示さ れる構造材中の位置*r*₁, *r*₂における放射化量を数値シミュレーションにより評価することと する。

図 3.4.1 放射化量を評価する位置

核反応断面積の不確かさに従ってランダムサンプリング法により、構造材中の位置r₁, r₂における放射化量の解析値を多数サンプル獲得し、サンプル毎に図示したものが図 3.4.2 である。

位置r₂の放射化量の解析値 図 3.4.2 構造材中の位置r₁, r₂における放射化量の相関

図 3.4.2 より、構造材中の位置 r_1 , r_2 における放射化量の間には正の相関があることが見て取 れる(青色の領域)。構造材中の位置 r_1 , r_2 における放射化量の平均値と不確かさ(標準偏差)は、 これらすべてのサンプルの値を統計処理して評価する。ここで、実際に検出器で測定を行い、 構造材中の位置 r_2 における放射化量の測定値が得られたとする(図 3.4.1)。解析値と測定値 の差異が核反応断面積の不確かさに起因するものである場合、位置 r_2 における放射化量の測 定値の情報から、位置 r_1 における放射化量の解析値の平均値と不確かさは、すべてのサンプ ルの値を統計処理するのではなく、位置 r_2 における放射化量の解析値が測定値の付近のサン プルだけ統計処理するべきであると考えられる。よって、測定値の情報と解析値の相関関係 を加味することにより、位置 r_1 における放射化量の解析値の平均値は補正され不確かさも変 化する。具体的には、図 3.4.3 で示されるように、平均値が補正され標準偏差(ばらつき)も 相関の幅まで減少する。よって、バイアス因子法により、解析値の相関関係と異なる位置で の放射化量の測定値により、解析値をより確からしい値へ補正することができる。

図 3.4.3 不確かさの低減のイメージ図

以降の節では、代表的なバイアス因子法である拡張バイアス因子法とランダムサンプリング法を用いたバイアス因子法について詳細を述べる[31]。

3.4.2 拡張バイアス因子法

3.4.1 節では、1 つの実験値から解析値を補正する例を挙げたが、本節で解説する拡張バイ アス因子法[14,31]は複数の地点($M_1, M_2...M_N$)の放射化量の解析値と実験値から、補正対象と する地点Rの放射化量の解析値に補正を行う。拡張バイアス因子法では、複数の実験値を累 乗して乗じることにより、仮想的な 1 つの実験値を設定する。そのような条件において、放 射化量の実験値及び解析値はそれぞれ式(3.4.2.1),(3.4.2.2)のようになる。

$$E_{PE} = \prod_{i=1}^{N} E_{M_i}^{F_i}$$
(3.4.2.1)

ここで、式中の変数は以下のものを示す。

F_i: 地点M_iの実験の累乗重み、E_{Mi}: 地点M_iの実験値、E_{PE}:仮想的な実験値

$$C_{PE} = \prod_{i=1}^{N} C_{M_i}^{F_i}$$
(3.4.2.2)

ここで、式中の変数は以下のものを示す。 *C_{Mi}*: 地点*M_i*の解析値、*C_{PE}:仮想的な解析値* 今、バイアス因子と呼ばれる解析値の補正因子fpeを以下のように定義する。

$$f_{PE} = \frac{E_{PE}}{C_{PE}} = \frac{\prod_{i=1}^{N} E_{M_i}^{F_i}}{\prod_{i=1}^{N} C_{M_i}^{F_i}}$$
(3.4.2.3)

式(3.4.2.3)の補正因子を用いることで、式(3.4.2.4)のように地点Rの放射化量の解析値を補正 することができる。

$$\hat{E}_{R} = C_{R} f_{PE} = C_{R} \frac{\prod_{i=1}^{N} E_{M_{i}}^{F_{i}}}{\prod_{i=1}^{N} C_{M_{i}}^{F_{i}}}$$
(3.4.2.4)

ここで、式中の変数は以下のものを示す。

Ê_R: 地点Rの補正値

今、式(3.4.2.4)において重みの係数である F_i は定まっていない。そこで、 F_i は補正値 \hat{E}_R の分散 が最小となるように決定される。補正値 \hat{E}_R の分散の式を以降で導出していくため、まず、式 (3.4.2.4)を次の(3.4.2.5)式のように変形する。

$$\hat{E}_{R} = C_{R}f_{PE} = C_{R}\frac{\prod_{i=1}^{N}E_{M_{i}}^{F_{i}}}{\prod_{i=1}^{N}C_{M_{i}}^{F_{i}}}$$

$$= T_{R}\left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m}\right)\frac{\prod_{i=1}^{N}T_{M_{i}}\left(1 + \delta E_{M_{i}}\right)^{F_{i}}}{\prod_{i=1}^{N}T_{M_{i}}\left(1 + \delta C_{M_{i}}^{inp} + \delta C_{M_{i}}^{m}\right)^{F_{i}}}$$
(3.4.2.5)

ここで、式中の変数は以下のものを示す。

 T_R : 地点Rの真値、 δC_R^{inp} : 地点Rの解析値の巨視的核反応断面積(入力パラメータ)に起因する相対誤差、 δC_R^m : 地点Rの解析値の計算手法に起因する相対誤差

 T_{M_i} : 地点 M_i の真値、 $\delta C_{M_i}^{inp}$: 地点 M_i の解析値の巨視的核反応断面積に起因する相対誤差、 $\delta C_{M_i}^m$: 地点 M_i の放射化量の計算手法に起因する相対誤差、 δE_{M_i} : 地点 M_i の実験値の相対誤差 (測定誤差)

式(3.4.2.5)は次の式(3.4.2.6)のように変形される。

$$\begin{split} \hat{E}_{R} &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \frac{\prod_{i=1}^{N} T_{M_{i}} \left(1 + \delta E_{M_{i}} \right)^{F_{i}}}{\prod_{i=1}^{N} T_{M_{i}} \left(1 + \delta C_{M_{i}}^{inp} + \delta C_{M_{i}}^{m} \right)^{F_{i}}} \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \frac{\prod_{i=1}^{N} \exp\left(F_{i} \ln\left(1 + \delta E_{M_{i}}\right)\right)}{\prod_{i=1}^{N} \exp\left(F_{i} \ln\left(1 + \delta E_{M_{i}}\right)\right)} \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \frac{\prod_{i=1}^{N} (1 + F_{i} \ln\left(1 + \delta E_{M_{i}}\right)\right)}{\prod_{i=1}^{N} \left(1 + F_{i} \ln\left(1 + \delta C_{M_{i}}^{inp} + \delta C_{M_{i}}^{m} \right) \right)} \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \frac{\prod_{i=1}^{N} (1 + F_{i} \delta E_{M_{i}})}{\prod_{i=1}^{N} \left(1 + F_{i} \left(\delta C_{M_{i}}^{inp} + \delta C_{M_{i}}^{m} \right) \right)} \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \frac{1 + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}}}{1 + \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} + \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m}} \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} \right) \left(1 + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} \right) \left(1 - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \right) \\ &= T_{R} \left(1 + \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} \right$$

$$\exp(a) \approx 1 + a \tag{3.4.2.7}$$

$$\ln(1+\alpha) \approx \alpha \tag{3.4.2.8}$$

$$(1+\alpha)^x \approx 1 + \alpha x \tag{3.4.2.9}$$

地点Rの補正値の相対誤差は、式(3.4.2.6)を用いて以下の式(3.4.2.10)のように表すことができる。

$$\delta \hat{E}_{R} = \frac{\hat{E}_{R} - T_{R}}{T_{R}}$$

$$= \delta C_{R}^{inp} + \delta C_{R}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} \qquad (3.4.2.10)$$

$$= \delta C_{R}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp} + \delta C_{R}^{m} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m} + \sum_{i=1}^{N} F_{i} \delta E_{M_{i}}$$

(3.4.2.10)式より、補正値の相対分散は以下の式(3.4.2.11)のように表せる。ただし 4→5 行目の式変形に、巨視的核反応断面積に起因する不確かさを相対感度係数によって表現している。

$$V\left(\frac{\hat{E}_R}{T_R}\right) = V(\delta \hat{E}_R)$$

$$= \mathbb{E}\left[\left(\delta \hat{E}_{R} - \mathbb{E}[\delta \hat{E}_{R}]\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\Delta\left(\delta C_{R}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp}\right) + \Delta\left(\delta C_{R}^{m} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m}\right) + \Delta\left(\sum_{i=1}^{N} F_{i} \delta E_{M_{i}}\right)\right)^{2}\right]$$

$$= \mathbb{E}\left[\Delta\left(\delta C_{R}^{inp} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{inp}\right)^{2} + \Delta\left(\delta C_{R}^{m} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m}\right)^{2} + \Delta\left(\sum_{i=1}^{N} F_{i} \delta E_{M_{i}}\right)^{2}\right]$$

$$= \left(G(R \leftarrow \Sigma) - \sum_{i=1}^{N} F_{i} G(M_{i} \leftarrow \Sigma)\right) \Sigma\left(G(R \leftarrow \Sigma) - \sum_{i=1}^{N} F_{i} G(M_{i} \leftarrow \Sigma)\right)^{T}$$

$$+ \mathbb{V}\left(\delta C_{R}^{m} - \sum_{i=1}^{N} F_{i} \delta C_{M_{i}}^{m}\right) + \mathbb{V}\left(\sum_{i=1}^{N} F_{i} \delta E_{M_{i}}\right)$$

$$(3.4.2.11)$$

Σ: 巨視的核反応断面積の分散共分散行列、

$$G(R \leftarrow \Sigma) = \begin{pmatrix} \frac{\partial R}{\partial \Sigma_1} & \frac{\partial R}{\partial \Sigma_2} & ... & \frac{\partial R}{\partial \Sigma_n} \end{pmatrix}$$
: 地点 R の感度係数ベクトル、
 $G(M_i \leftarrow \Sigma) = \begin{pmatrix} \frac{\partial M_i}{\partial \Sigma_1} & \frac{\partial M_i}{\partial \Sigma_2} & ... & \frac{\partial M_i}{\partial \Sigma_n} \end{pmatrix}$: 地点 M_i の感度係数ベクトル

冒頭で述べたように、補正値 \hat{E}_R の分散である式(3.4.2.11)を最小にするように、 F_i を決定する。その条件は、以下の式(3.4.2.12)で表される。

$$\frac{\partial V\left(\frac{\hat{E}_R}{T_R}\right)}{\partial F_i} = 0 \tag{3.4.2.12}$$

よって、(3.4.2.11)、式(3.4.2.12)から式(3.4.2.13)のように各々の*F_i*に対する独立なN個の連立 方程式が得られる。

$$\sum_{j=1}^{N} F_i \left(\boldsymbol{G}(M_i \leftarrow \Sigma) \boldsymbol{\Sigma} \boldsymbol{G}(M_i \leftarrow \Sigma)^T + \operatorname{cov} \left(\delta C_{M_i}^m, \delta C_{M_j}^m \right) + \operatorname{cov} \left(\delta E_{M_i}, \delta E_{M_j} \right) \right) - \left(\boldsymbol{G}(R \leftarrow \Sigma) \boldsymbol{\Sigma} \boldsymbol{G}(M_i \leftarrow \Sigma)^T + \operatorname{cov} \left(\delta C_R^m, \delta C_{M_i}^m \right) \right) = 0, (i = 1, 2, 3, \dots, N)$$
(3.4.2.13)

式(3.4.2.13)により、 F_i を計算することができれば、式(3.4.2.4)、(3.4.2.11)より補正値及び補正 値の不確かさを評価することができる。

3.4.3 ランダムサンプリング法を用いたバイアス因子法

ランダムサンプリング法を用いたバイアス因子法は、放射化量の感度を評価せずとも、ランダムサンプリング法により評価されたサンプルの結果から解析値を補正することのできる方法である。以降、ランダムサンプリング法を用いたバイアス因子法の理論式の導出を行うが[15,31]、複数の地点(*M*₁, *M*₂...*M*_n)の放射化量の解析値と実験値から、補正対象とする地点(*R*₁, *R*₂...*R*_m)の放射化量の解析値に補正を行うこととする。

まず、補正対象とする地点($R_1, R_2...R_m$)の放射化量の補正値のベクトル \hat{E}_R が式(3.4.3.1)のように補正されると仮定する。

$$\widehat{\boldsymbol{E}}_{R} = \boldsymbol{C}_{R} + \mathbf{K}(\boldsymbol{E}_{\boldsymbol{M}} - \boldsymbol{C}_{\boldsymbol{M}}) \tag{3.4.3.1}$$

ここで、式中の変数は以下のものを示す。 *C_R*: 地点(*R*₁, *R*₂...*R_m*)の放射化量の解析値のベクトル、 *E_M*: 地点(*M*₁, *M*₂...*M_n*)の放射化量の実験値のベクトル、 *C_M*: 地点(*M*₁, *M*₂...*M_n*)の放射化量の解析値のベクトル、 *K*: *m*行*n*列の補正行列

なお、以上のベクトルは具体的には式(3.4.3.2)のように示される。

$$\widehat{\boldsymbol{E}}_{R} = \begin{bmatrix} \widehat{E}_{R1} \\ E_{R2} \\ \vdots \\ \widehat{E}_{Rm} \end{bmatrix}, \quad \boldsymbol{C}_{\boldsymbol{M}} = \begin{bmatrix} \boldsymbol{C}_{M1} \\ \boldsymbol{C}_{M2} \\ \vdots \\ \boldsymbol{C}_{Mn} \end{bmatrix}, \quad \boldsymbol{C}_{R} = \begin{bmatrix} \boldsymbol{C}_{R1} \\ \boldsymbol{C}_{R2} \\ \vdots \\ \boldsymbol{C}_{Rn} \end{bmatrix}$$
(3.4.3.2)

また、それぞれのベクトルの各要素の期待値を各要素に持つベクトルE $[\hat{E}_R]$ 、E $[C_R]$ 、E $[C_M]$ は次の式(3.4.3.3)のように表現できる。

$$\mathbf{E}[\widehat{\boldsymbol{E}}_{R}] = \begin{bmatrix} \mathbf{E}[\widehat{\boldsymbol{E}}_{R1}] \\ \mathbf{E}[\boldsymbol{E}_{R2}] \\ \vdots \\ \mathbf{E}[\widehat{\boldsymbol{E}}_{Rm}] \end{bmatrix}, \ \mathbf{E}[\boldsymbol{C}_{\boldsymbol{M}}] = \begin{bmatrix} \mathbf{E}[\boldsymbol{C}_{M_{1}}] \\ \mathbf{E}[\boldsymbol{C}_{M_{2}}] \\ \vdots \\ \mathbf{E}[\boldsymbol{C}_{M_{1}}] \end{bmatrix}, \ \mathbf{E}[\boldsymbol{C}_{R}] = \begin{bmatrix} \mathbf{E}[\boldsymbol{C}_{R_{1}}] \\ \mathbf{E}[\boldsymbol{C}_{R_{2}}] \\ \vdots \\ \mathbf{E}[\boldsymbol{C}_{R_{m}}] \end{bmatrix}$$
(3.4.3.3)

補正行列K(カルマンフィルタ行列とも呼ぶ)については、拡張バイアス因子法の場合と同様 に補正値の分散共分散行列 $\Sigma_{\hat{E}_R\hat{E}_R}$ を最小にするように決定する。まず、式(3.4.3.4)で示される ように補正値の平均値からの差異を考える。

$$\Delta(\widehat{E}_R) = (\widehat{E}_R - \mathbf{E}[\widehat{E}_R])$$

= $C_R + \mathbf{K}(E_M - C_M) - \mathbf{E}[C_R + \mathbf{K}(E_M - C_M)]$
= $C_R - \mathbf{E}[C_R] + \mathbf{K}(E_M - \mathbf{E}[E_M]) - \mathbf{K}(C_M - \mathbf{E}[C_M])$
= $\Delta(C_R) + \mathbf{K}\Delta(E_M) - \mathbf{K}\Delta(C_M)$ (3.4.3.4)

ここで、以降の式変形において分散共分散行列 $\Sigma_{A,B}$ が式(3.4.3.5)のように表現できることを 先に確認しておく。なお、以降で、巨視的反応断面積 Σ と分散共分散行列 Σ という似た文字が 出てくるが、本節においては、太文字で示されたベクトル変数 Σ は分散共分散行列を、通常 文字で示されたスカラー変数 Σ は巨視的反応断面積を示すことをあらかじめ断っておく。

$$\begin{split} \mathbf{\Sigma}_{A,B} &= \begin{bmatrix} \cos(A_1, B_1) & \cos(A_1, B_2) & \cdots & ov(A_1, B_n) \\ \cos(A_2, B_1) & \cos(A_2, B_2) & \cdots & \cos(A_2, B_n) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(A_m, B_1) & \cos(A_m, B_2) & \cdots & \cos(A_m, B_n) \end{bmatrix} \\ &= \begin{bmatrix} E[(A_1 - E[A_1])(B_1 - E[B_1])] & E[(A_1 - E[A_1])(B_2 - E[B_2])] & \cdots \\ E[(A_2 - E[A_2])(B_1 - E[B_1])] & E[(A_2 - E[A_2])(B_2 - E[B_2])] & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \\ &= \begin{bmatrix} E[\Delta(A_1)\Delta(B_1)] & E[\Delta(A_1)\Delta(B_2)] & \cdots \\ E[\Delta(A_2)\Delta(B_1)] & E[\Delta(A_2)\Delta(B_2)] & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \\ &= E\begin{bmatrix} \begin{bmatrix} \Delta(A_1) \\ \Delta(A_2) \\ \vdots \\ \Delta(A_m) \end{bmatrix} [\Delta(B_1) & \Delta(B_2) & \cdots & \Delta(B_n)] \end{bmatrix} \\ &= E[\Delta(A)\Delta(B)^T] \end{split}$$
(3.4.3.5)

実験値と計算値に相関がないとすると、式(3.4.3.4)、式(3.4.3.5)を用いることで、補正値の分 散共分散行列 $\Sigma_{\hat{E}_R\hat{E}_R}$ は、式(3.4.3.6)のように表すことができる。

$$\begin{split} \boldsymbol{\Sigma}_{\hat{E}_{R}\hat{E}_{R}} &= \mathbf{E} \left[\Delta(\hat{E}_{R})\Delta(\hat{E}_{R})^{T} \right] \\ &= \mathbf{E} \left[\left(\Delta(C_{R}) + \mathbf{K}\Delta(E_{M}) - \mathbf{K}\Delta(C_{M}) \right) \left(\Delta(C_{R}) + \mathbf{K}\Delta(E_{M}) - \mathbf{K}\Delta(C_{M}) \right)^{T} \right] \\ &= \mathbf{E} \left[\Delta(C_{R})\Delta(C_{R})^{T} + \Delta(C_{R}) \left(\mathbf{K}\Delta(E_{M}) \right)^{T} - \Delta(C_{R}) \left(\mathbf{K}\Delta(C_{M}) \right)^{T} \\ &+ \mathbf{K}\Delta(E_{M})\Delta(C_{R})^{T} + \mathbf{K}\Delta(E_{M}) \left(\mathbf{K}\Delta(E_{M}) \right)^{T} - \mathbf{K}\Delta(E_{M}) \left(\mathbf{K}\Delta(C_{M}) \right)^{T} \right] \\ &= \mathbf{E} \left[\Delta(C_{R})\Delta(C_{R})^{T} - \mathbf{K}\Delta(C_{M}) \left(\mathbf{K}\Delta(E_{M}) \right)^{T} + \mathbf{K}\Delta(C_{M}) \left(\mathbf{K}\Delta(C_{M}) \right)^{T} \right] \\ &= \mathbf{E} \left[\Delta(C_{R})\Delta(C_{R})^{T} + \mathbf{K}\Delta(E_{M})\Delta(E_{M})^{T}\mathbf{K}^{T} - \mathbf{K}\Delta(E_{M})\Delta(C_{M})^{T}\mathbf{K}^{T} \\ &+ \mathbf{K}\Delta(E_{M})\Delta(C_{R})^{T} + \mathbf{K}\Delta(E_{M})\Delta(E_{M})^{T}\mathbf{K}^{T} - \mathbf{K}\Delta(C_{M})\Delta(C_{M})^{T}\mathbf{K}^{T} \right] \qquad (3.4.3.6) \\ &= \mathbf{E} \left[\Delta(C_{R})\Delta(C_{R})^{T} \right] + \mathbf{E} \left[\Delta(C_{R})\Delta(E_{M})^{T} \right] \mathbf{K}^{T} - \mathbf{E} \left[\Delta(C_{R})\Delta(C_{M})^{T} \right] \mathbf{K}^{T} \\ &+ \mathbf{K} \left[\Delta(E_{M})\Delta(C_{R})^{T} \right] + \mathbf{K} \left[\Delta(E_{M})\Delta(E_{M})^{T} \right] \mathbf{K}^{T} - \mathbf{K} \left[\Delta(E_{M})\Delta(C_{M})^{T} \right] \mathbf{K}^{T} \\ &- \mathbf{K} \left[\Delta(C_{M})\Delta(C_{R})^{T} \right] - \mathbf{K} \left[\Delta(C_{M})\Delta(E_{M})^{T} \right] \mathbf{K}^{T} - \mathbf{K} \left[\Delta(C_{M})\Delta(C_{M})^{T} \right] \mathbf{K}^{T} \\ &= \mathbf{\Sigma}_{C_{R}} c_{R} + \mathbf{O} - \mathbf{\Sigma}_{C_{R}} c_{M} \mathbf{K}^{T} - \mathbf{O} \\ &- \mathbf{K} \mathbf{\Sigma}_{C_{M}} c_{R} - \mathbf{O} + \mathbf{K} \mathbf{\Sigma}_{C_{M}} c_{M} \mathbf{K}^{T} \\ &= \mathbf{\Sigma}_{C_{R}} c_{R} - \mathbf{\Sigma}_{C_{R}} c_{M} \mathbf{K}^{T} + \mathbf{K} \mathbf{\Sigma}_{E_{M}} c_{M} \mathbf{K}^{T} - \mathbf{K} \mathbf{\Sigma}_{C_{M}} c_{R} + \mathbf{K} \mathbf{\Sigma}_{C_{M}} c_{M} \mathbf{K}^{T} \end{split}$$

式(3.4.3.6)に対してトレースを考えKで微分することで、トレースが最小となるKを考える。 なお、以降の式変形において、トレース及び転置行列に関する公式を先に確認しておく。

$$\operatorname{tr}(\boldsymbol{P} + \boldsymbol{Q}) = \operatorname{tr}(\boldsymbol{P}) + \operatorname{tr}(\boldsymbol{Q}) \tag{3.4.3.7}$$

$$tr(\boldsymbol{P}\boldsymbol{Q}) = tr(\boldsymbol{Q}\boldsymbol{P}) \tag{3.4.3.8}$$

$$\frac{\partial tr(\mathbf{PX})}{\partial \mathbf{X}} = \mathbf{P}^T \tag{3.4.3.9}$$

$$\frac{\partial tr(\boldsymbol{P}^{T}\boldsymbol{X})}{\partial \boldsymbol{X}} = \boldsymbol{P}$$
(3.4.3.10)

$$\frac{\partial tr(\mathbf{X}\mathbf{P}\mathbf{X}^{T})}{\partial \mathbf{X}} = \mathbf{X}(\mathbf{P} + \mathbf{P}^{T})$$

$$(3.4.3.11)$$

$$(\mathbf{P}\mathbf{0})^{T} = \mathbf{0}^{T}\mathbf{P}^{T}$$

$$(3.4.3.12)$$

$$(\boldsymbol{P}\boldsymbol{Q})^T = \boldsymbol{Q}^T \boldsymbol{P}^T \tag{3.4.3.12}$$

$$(\mathbf{X}^{-1})^T = (\mathbf{X}^T)^{-1} \tag{3.4.3.13}$$

以上の公式より、式(3.4.3.6)から $\partial tr(\Sigma_{\hat{E}_R\hat{E}_R})/\partial K$ が(3.4.3.14)式のように表現できる。

$$\frac{\partial \operatorname{tr}(\Sigma_{\tilde{E}_{R}\tilde{E}_{R}})}{\partial \mathbf{K}}$$

$$= \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\Sigma_{c_{R}c_{R}} - \Sigma_{c_{R}c_{M}}\mathbf{K}^{T} + \mathbf{K}\Sigma_{E_{M}E_{M}}\mathbf{K}^{T} - \mathbf{K}\Sigma_{c_{M}c_{R}} + \mathbf{K}\Sigma_{c_{M}c_{M}}\mathbf{K}^{T})$$

$$= \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\Sigma_{c_{R}c_{R}}) - \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\Sigma_{c_{R}c_{M}}\mathbf{K}^{T}) + \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\mathbf{K}\Sigma_{E_{M}E_{M}}\mathbf{K}^{T})$$

$$- \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\mathbf{K}\Sigma_{c_{M}c_{R}}) + \frac{\partial}{\partial \mathbf{K}}\operatorname{tr}(\mathbf{K}\Sigma_{c_{M}c_{M}}\mathbf{K}^{T})$$

$$= \Sigma_{c_{R}c_{M}} + \mathbf{K}(\Sigma_{E_{M}E_{M}} + \Sigma_{E_{M}E_{M}}^{T}) - \Sigma_{c_{M}c_{R}}^{T} + \mathbf{K}(\Sigma_{c_{M}c_{M}} + \Sigma_{c_{M}c_{M}}^{T})$$

$$= -2\Sigma_{c_{R}c_{M}} + 2\mathbf{K}(\Sigma_{c_{M}c_{M}} + \Sigma_{E_{M}E_{M}})$$
(3.4.3.14)

よって、トレースが最小となるよう $\partial tr(\Sigma_{\hat{E}_R\hat{E}_R})/\partial K = 0$ とすると、**K**が式(3.4.3.15)のように評 価することができる

$$-2\Sigma_{C_R C_M} + 2\mathbf{K} (\Sigma_{C_M C_M} + \Sigma_{E_M E_M}) = 0$$

$$\therefore \mathbf{K} = \Sigma_{C_R C_M} (\Sigma_{C_M C_M} + \Sigma_{E_M E_M})^{-1}$$
(3.4.3.15)

補正値の分散共分散行列 $\Sigma_{\hat{E}_R\hat{E}_R}$ は式(3.4.3.15)より式(3.4.3.15)のようになる。

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{\hat{E}}_{R}\boldsymbol{\hat{E}}_{R}} &= \mathbf{E} \left[\boldsymbol{\Delta} \left(\boldsymbol{\hat{E}}_{R} \right) \boldsymbol{\Delta} \left(\boldsymbol{\hat{E}}_{R} \right)^{T} \right] \\ &= \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}\boldsymbol{C}_{R}} - \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}\boldsymbol{C}_{M}} \mathbf{K}^{T} + \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{E}_{M}\boldsymbol{E}_{M}} \mathbf{K}^{T} - \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{R} + \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{M} \mathbf{K}^{T} \\ &= \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}\boldsymbol{C}_{R}} - \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}\boldsymbol{C}_{M}} \mathbf{K}^{T} + \mathbf{K} \left(\boldsymbol{\Sigma}_{\boldsymbol{E}_{M}\boldsymbol{E}_{M}} + \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{M} \right) \mathbf{K}^{T} - \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{R} \\ &= \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}} \boldsymbol{C}_{R} - \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}} \boldsymbol{C}_{M} \mathbf{K}^{T} + \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}} \boldsymbol{C}_{M} \mathbf{K}^{T} + - \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{R} \\ &= \boldsymbol{\Sigma}_{\boldsymbol{C}_{R}} \boldsymbol{C}_{R} - \mathbf{K} \boldsymbol{\Sigma}_{\boldsymbol{C}_{M}} \boldsymbol{C}_{R} \end{split}$$
(3.4.3.16)

以上により、ランダムサンプリング法によるバイアス因子法の理論式をまとめると、次の式 (3.4.3.17)~式(3.4.3.19)のようになる。

$$\widehat{\boldsymbol{E}}_{R} = \boldsymbol{C}_{R} + \mathbf{K}(\boldsymbol{E}_{M} - \boldsymbol{C}_{M}) \tag{3.4.3.17}$$

$$\mathbf{K} = \boldsymbol{\Sigma}_{C_R C_M} \left(\boldsymbol{\Sigma}_{C_M C_M} + \boldsymbol{\Sigma}_{E_M E_M} \right)^{-1}$$
(3.4.3.18)

$$\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{E}_{\boldsymbol{R}}\boldsymbol{E}_{\boldsymbol{R}}} = \boldsymbol{\Sigma}_{\boldsymbol{C}_{\boldsymbol{R}}\boldsymbol{C}_{\boldsymbol{R}}} - \mathbf{K}\boldsymbol{\Sigma}_{\boldsymbol{C}_{\boldsymbol{M}}\boldsymbol{C}_{\boldsymbol{R}}}$$
(3.4.3.19)

なお、実際には、式(3.4.3.20)のように分散共分散行列 Σ_{XY} は入力データに起因する不確かさ Σ_{XY}^{inp} と計算手法に起因する不確かさ Σ_{XY}^{m} に分けられる。

$$\boldsymbol{\Sigma}_{XY} = \boldsymbol{\Sigma}_{XY}^{inp} + \boldsymbol{\Sigma}_{XY}^{m} \tag{3.4.3.20}$$

ここで、式中の変数は以下のものを示す。

X,Y:C_M,C_R等の任意の組み合わせ

ランダムサンプリング法を用いたバイアス因子法では、式(3.4.3.17)~式(3.4.3.19)からわか るように、複数の解析値間や実験値間の相関、すなわち分散共分散行列がわかれば、補正が 可能である。よって、放射化量の感度を直接評価することなく、ランダムサンプリング法に より評価したサンプルの結果から求めることができる。なお、この手法は感度係数からでも 補正が可能であり、例えば、分散共分散 $\Sigma_{C_M C_R}$ であれば式(3.4.3.21)で示されるように感度係 数行列から評価することができるため、同様に $\Sigma_{C_M C_R}$ を評価することで式(3.4.3.17)~ 式(3.4.3.19)より補正が可能である。

$$\boldsymbol{\Sigma}_{\boldsymbol{\mathcal{C}}_{\boldsymbol{\mathcal{M}}}\boldsymbol{\mathcal{C}}_{\boldsymbol{\mathcal{R}}}} \approx \boldsymbol{\boldsymbol{\mathcal{G}}}(\boldsymbol{\mathcal{C}}_{\boldsymbol{\mathcal{M}}} \leftarrow \boldsymbol{\Sigma})\boldsymbol{\Sigma}_{\boldsymbol{\Sigma}}\boldsymbol{\boldsymbol{\mathcal{G}}}(\boldsymbol{\mathcal{C}}_{\boldsymbol{\mathcal{R}}} \leftarrow \boldsymbol{\Sigma})^{T}$$
(3.4.3.21)

ここで、式中の変数は以下のものを示す。

 $G(C_M \leftarrow \Sigma)$: 巨視的核反応断面積に対する地点 $(M_1, M_2...M_n)$ の放射化量の感度係数ベクトル $G(C_R \leftarrow \Sigma)$: 巨視的核反応断面積に対する地点 $(R_1, R_2...R_n)$ の放射化量の感度係数ベクトル Σ_{Σ} : 巨視的核反応断面積の分散共分散行列
3.5 本章のまとめ

本章では、入力パラメータの一つである核反応断面積に起因した放射化量の不確かさの 定量評価手法(ランダムサンプリング法、直接法、摂動論を用いた方法、ROM)及び評価され た不確かさの低減手法(バイアス因子法)について述べた。

3.2 節では、従来の放射化量の不確かさ定量評価手法として、代表的なランダムサンプリ ング法と感度係数を用いる手法(直接法及び摂動論を用いる方法)について述べた。それぞれ 手法の計算コストに関する特徴として、ランダムサンプリング法はサンプル数に、直接法は 入力パラメータの数(巨視的核反応断面積)に、(1次)摂動論を用いる方法は出力パラメータ の数(放射化量の不確かさを求めるメッシュ総数)に依存することを述べた。

3.3節では、放射化解析を行う際の従来の放射化量の不確かさ定量評価手法において課題 であった計算コストを大幅に削減することを目的として、本研究で開発された ROM(Reduced Order Modeling)を用いた新たな放射化量の不確かさ定量評価手法について詳 しく述べた。ROM は、感度解析において有意な入力パラメータの摂動方向(Active Subspace,AS)を特定することで感度解析に掛かる計算コストを削減する手法であり、本研究 においては AS を構造材の代表点の放射化量の感度係数ベクトルから構築することで、計算 コストを大幅に削減する手法を提案した。

また、3.4節では、計算値の相関関係と実験値を用いて、評価された放射化量の不確かさ を低減し、計算値の精度を向上するバイアス因子法について述べた。本節では、代表的なバ イアス因子法である拡張バイアス因子法とランダムサンプリング法を用いたバイアス因子 法について理論式の導出を行い、ランダムサンプリング法を用いたバイアス因子法では、感 度係数を直接評価せずとも、ランダムサンプリングにより得られたサンプルの結果を統計 処理することにより、補正が行えることを述べた。

第4章 解析結果

4.1 本章の概要

本章では、ランダムサンプリング法及び本研究で提案した ROM を用いた不確かさ評価手 法により、核反応断面積に起因した放射化量の不確かさの評価結果について述べる。また、 ランダムサンプリング法を用いたバイアス因子法により、ランダムサンプリング法や ROM を用いた手法において評価された放射化量の不確かさや感度係数から解析値を補正し、不 確かさを低減した結果について述べる。

4.2 節では、500MWe級の沸騰水型原子力発電所を模擬した1次元円柱体系を対象として、 ランダムサンプリング法及び ROM を用いた不確かさ評価手法により放射化量の不確かさ を評価し、バイアス因子法により不確かさを低減した結果について詳細を述べる。

4.3 節では、福島第一原子力発電所1号機を模擬した2次元 r-z 体系を対象として、多次元体系でも低計算コストで感度係数を評価することを目的として開発した ROM を用いた不確かさ評価手法により放射化量の不確かさを評価し、バイアス因子法により不確かさを 低減した結果について、実用性の観点とともに詳細を述べる。最後に、4.4 節では、本章のまとめを述べる。

4.2 1次元円柱体系における不確かさ評価及び不確かさ低減

4.2.1 解析体系及び計算条件

4.2 節では、500MWe 級の沸騰水型原子力発電所を模擬した1次元円柱体系において、構造材の放射化量の不確かさ評価及び低減を実施した内容について述べる。4.2.1 節では、解析体系及び計算条件について述べる。

まず、4.2節で対象とする1次元円柱モデルの体系を図4.2.1に示す。図4.2.1の各領域の寸法・物質・温度は表4.2.1の通りで、各領域の原子数密度及び同位体の天然存在比は表4.2.2、表4.2.3の通りである。これらの値については、公開されている文献情報[32-35]に基づいた典型的な値を使用することとした。また、炉心領域の組成・温度等については、公開情報であるPeach Bottom 2号機(PB2)[32]の cycle1で装荷された Type1 燃料集合体の値を参考に設定した。なお、図4.2.1の1次元モデルは図4.2.2で示される沸騰水型軽水炉の赤枠で示された燃料集合体が装荷された炉心領域から生体遮蔽外壁までの領域を対象としている。

図 4.2.1 500MWe 級の沸騰水型原子力発電所を模擬した1次元円柱体系

図 4.2.2 1 次元円柱モデルにおいて対象とする領域[36:図一部引用]

領域	部位	r _{left} [cm]	r _{right} [cm]	組成	温度[K]	メッシュ分割
1	燃料集合体領域	0	165	燃料集合体		600
2	シュラウド内側冷却材	165	181	水	559	60
3	シュラウド	181	184.8	SUS304	559	12
4	圧力容器内側空間	184.8	234	水	559	190
5	圧力容器クラッド	234	234.5	SUS304	559	3
6	圧力容器	234.5	246.5	RPV炭素鋼	559	30
7	格納容器内側空間	246.5	489	窒素	300	235
8	格納容器	489	491	炭素鋼	300	9
9	PCV-BSWギャップ	491	496	空気	300	7
10	生体遮蔽	496	719	コンクリート	300	560
11	<u>生体遮蔽-生体遮蔽外壁</u> ギャップ	719	1040	空気	300	300
12	生体遮蔽外壁	1040	1150	コンクリート	300	294

表 4.2.1 1次元モデルにおける各領域の寸法・物質・温度

注) 燃料集合体領域の温度については燃料が 790[K]、被覆管が 586.7[K]、減速材が 559[K] と設定[32]

	領域番号	1				
	部位	燃料ピン	被覆管	減速材		
	組成	燃料	Zr-2	水		
	温度[K]	790	587	559		
	Н			3.119E-02		
	С					
	Ν					
	0	4.610E-02		1.560E-02		
	Na					
	Mg					
	Al					
	Si					
	Р					
	S					
一またの	K					
元素毎の	Ca					
原于쮫密度 [個/(barnyom)]	Cr		7.586E-05			
	Mn					
	Fe		9.889E-05			
	Ni		4.032E-05			
	Cu					
	Zn					
	Zr		4.250E-02			
	Мо					
	Sn		4.652E-04			
	U235	2.574E-04				
	U238	2.280E-02				
	U234	2.068E-06				

表 4.2.2 各領域の原子数密度[個/(barn×cm³)](炉心領域)

領域番号	2	3	4	5	6
部位	シュラウド内側冷却材	シュラウド	圧力容器内側空間	圧力容器クラッド	圧力容器
組成	水	SUS304	水	SUS304	RPV炭素鋼
温度[K]	559	559	559	559	559
Н	4.928E-02		4.928E-02		
C		3.173E-04		3.173E-04	9.829E-04
Ν					
0	2.464E-02		2.464E-02		
Na					
Mg					
Al					
Si		1.696E-03		1.696E-03	3.870E-04
Р		6.921E-05		6.921E-05	
S		4.457E-05		4.457E-05	
K					
Ca					
Cr		1.741E-02		1.741E-02	
Mn		1.734E-03		1.734E-03	1.140E-03
Fe		5.787E-02		5.787E-02	8.220E-02
Ni		8.112E-03		8.112E-03	4.430E-04
Cu					
Zn					
Zr					
Мо					2.460E-04
Sn					
U235					
U238					
U234					

表 4.2.3 各領域の原子数密度[個/(barn×cm³)](炉心((領域以外)	
-------------------------------------	--------	--

領域番号	7	8	9	10	11	12
部位	格納容器内側空間	格納容器	PCV-BSWギャップ	生体遮へい壁	居室空間	生体遮へい外壁
組成	窒素	炭素鋼	空気	コンクリート	空気	コンクリート
温度[K]	300	300	300	300	300	300
Н			7.199E-09	8.320E-03	7.199E-09	8.320E-03
C		1.060E-03	7.585E-09	1.115E-04	7.585E-09	1.115E-04
Ν	5.374E-05		3.910E-05		3.910E-05	
0			1.054E-05	4.186E-02	1.054E-05	4.186E-02
Na				9.321E-04		9.321E-04
Mg				1.198E-04		1.198E-04
Al				1.683E-03		1.683E-03
Si		3.870E-04		1.607E-02		1.607E-02
Р						
S						
K				4.453E-04		4.453E-04
Ca				1.453E-03		1.453E-03
Cr						
Mn		6.880E-04				
Fe		8.350E-02		3.337E-04		3.337E-04
Ni						
Cu						
Zn						
Zr						
Mo						
Sn						
U235						
U238						
U234						

元素	核種	存在比[%]	元素	核種	存在比[%]	元素	核種	存在比[%]
Н	H-1	99.9885	Ca	Ca-40	96.941		Zn-68	18.45
	H-2	0.0115		Ca-42	0.647		Zn-70	0.61
C	C-12	98.93		Ca-43	0.135	Zr	Zr-90	51.45
	C-13	1.07		Ca-44	2.086		Zr-91	11.22
N	N-14	99.636		Ca-46	0.004		Zr-92	17.15
	N-15	0.364		Ca-48	0.187		Zr-94	17.38
0	O-16	99.757	Cr	Cr-50	4.345		Zr-96	2.8
	O-17	0.038		Cr-52	83.789	Mo	Mo-92	14.53
	O-18	0.205		Cr-53	9.501		Mo-94	9.15
Na	Na-23	100		Cr-54	2.365		Mo-95	15.84
Mg	Mg-24	78.99	Mn	Mn-55	100		Mo-96	16.67
	Mg-25	10	Fe	Fe-54	5.845		Mo-97	9.6
	Mg-26	11.01		Fe-56	91.754		Mo-98	24.39
Al	Al-27	100		Fe-57	2.119		Mo-100	9.82
Si	Si-28	92.223		Fe-58	0.282	Sn	Sn-112	0.97
	Si-29	4.685	Ni	Ni-58	68.077		Sn-114	0.66
	Si-30	3.092		Ni-60	26.223		Sn-115	0.34
Р	P-31	100		Ni-61	1.1399		Sn-116	14.54
S	S-32	94.99		Ni-62	3.6346		Sn-117	7.68
	S-33	0.75		Ni-64	0.9255		Sn-118	24.22
	S-34	4.25	Cu	Cu-63	69.15		Sn-119	8.59
	S-36	0.01		Cu-65	30.85		Sn-120	32.58
K	K-39	93.2581	Zn	Zn-64	49.17		Sn-122	4.63
	K-40	0.0117		Zn-66	27.73		Sn-124	5.79
	K-41	6.7302		Zn-67	4.04			

表 4.2.4 同位体の天然存在比[%]

各領域の実効断面積は、JENDL-4.0[19]に基づく中性子遮へい計算用の核データライブラ リMATXSLIB-J40[20]よりTRASNX2.15[21]コードを用いて作成した。なお、炉心領域以外 の中性子の自己遮蔽効果については、TRANSX において幾何形状オプションで IHET=1(constant escape cross section)とし、式(4.2.1.1)で示されるような体系の平均弦長*l*を考 慮することで実効断面積へ反映させた。

$$l = \frac{4V}{S} \tag{4.2.1.1}$$

ここで、式中の変数は以下のものを示す。

V: 領域の体積、S: 領域の面積

なお、平均弦長の評価において、領域の体積 V と領域の面積 Sについて 1 次元体系では計算 することができないが、高さ 20m の円柱を考えること(上下の端面を考慮)で、算出すること とした。

 領域であるため、均質化する必要がある。しかし、単純に領域体積を重みとして原子数密度 を均質化した場合、²³⁸Uの 6.67eV の巨大共鳴等による自己遮蔽効果が適正に評価されず、 吸収断面積が過大評価される[37]。そこで本研究では、TRANSX において IHT=4 とするこ とで、それぞれの領域について自己遮蔽効果を考慮した実効断面積を作成してから領域体 積を重みとして均質化した。

中性子遮へい計算(forward 計算)は名古屋大学で開発された離散座標法に基づくコードに より、炉心領域に²³⁵Uの核分裂スペクトルを模擬した固定中性子源を設置し固定源計算を 実施した。本検討においては、固定中性子源に核分裂スペクトルの値をそのまま用いており、 計算結果である中性子束や放射化量の絶対値に意味は無く、例えば、実験値と比較する場合 には、実験で用いた固定中性子源との比を用いて補正する必要がある。ただし、放射化量の 不確かさは放射化量の"相対"標準偏差であるので、放射化量の絶対値を用いずとも評価する ことができる。また、随伴計算(adjoint 計算)は、感度係数を評価したいメッシュ位置に、随 伴源として構造材の放射化反応断面積 (⁵⁹Co の(n,γ)反応断面積)を設置することで実施し た。計算コードの詳細については、appendix を参照のこと。離散座標法における中性子遮へ い計算の計算条件は、表 4.2.5 の通りである。

散乱次数	P ₆
S _N 分点の次数	S ₁₆
角度分点セット	Triangular Chebychev-Legendre
差分法	ダイヤモンド差分
左側境界条件	完全反射
右側境界条件	真空
合計メッシュ数	2300
収束条件	10-6
エネルギー群数	199 群
thermal cutoff energy	3.93eV
熱群のエネルギー群数	35 群
加速法	CMFD

表 4.2.5 中性子遮へい計算の計算条件

構造材の放射化反応としては、原子力発電所の廃炉において主な問題となる放射性物質 ⁶⁰Coの生成反応である ⁵⁹Co(n, γ)⁶⁰Co反応を考慮した。なお、本研究における放射化量とは、 中性子束(相対値)に ⁵⁹Coの(n, γ)"微視的"核反応断面積を掛け合わせた値を意味しており、 構造材単位体積当たりの ⁵⁹Coの放射化反応率の絶対量ではないことを注意する必要がある。

また、核反応断面積の共分散データについては、すべての構造材核種の散乱及び捕獲核反応断面積と⁵⁹Coの(n, γ)反応断面積の共分散を考慮した。capture および scatter の断面積摂動因子 *f*_{capture}、*f*_{scatter}については、各核反応の無限希釈断面積を重みとして、断面積摂動因子

を算出することとした。

 $f_{capture}$

$$\approx \frac{\sigma_{(n,\gamma)}f_{(n,\gamma)} + \sigma_{(n,p)}f_{(n,p)} + \sigma_{(n,d)}f_{(n,d)} + \sigma_{(n,t)}f_{(n,t)} + \sigma_{(n,He3)}f_{(n,He3)} + \sigma_{(n,\alpha)}f_{(n,\alpha)}}{\sigma_{(n,\gamma)} + \sigma_{(n,p)} + \sigma_{(n,d)} + \sigma_{(n,t)} + \sigma_{(n,He3)} + \sigma_{(n,\alpha)}}$$
(4.2.1.2)

$$f_{\text{scatter}} \approx \frac{\sigma_{\text{elastic}} f_{\text{elastic}} + \sigma_{(n,n')} f_{(n,n')}}{\sigma_{\text{elastic}} + \sigma_{(n,n')}}$$
(4.2.1.3)

ここで、式中の変数は以下のものを示す。

なお、断面積の共分散データについては、本来ならば中性子遮へい計算で用いたものと同 じライブラリの共分散データを用いるべきである。しかし、JENDL-4.0 において、構造材を 構成している核種の分散共分散データが評価されていない場合が多いため、代用として構 造材核種の共分散データが豊富な SCALE コードシステムの 56 群の 56groupcov を使用する こととした[38]。ただし、中性子遮へい計算においては 199 群で中性子の輸送を計算してい るため、56 群の共分散データとはエネルギー群数が一致しない。そこで、本研究において は、次のような手順で 56 群の共分散データを 199 群へ仮想的に拡張する[39]。

- SCALE6.2 の 56groupcov を用いてランダムサンプリング法により、56 群の断面積因子を 作成する。
- ② 56 群の断面積因子を対応する 199 群のエネルギー群に割り当て、199 群へ拡張する。ただし、同じエネルギー群構造内に2つ以上の摂動因子が存在する場合、レサジーを重みとし摂動因子を重み付け平均したものを使用する。

ランダムサンプリング法を用いたバイアス因子法の適用については、3.4節で述べた通り、 構造材の一部において実験値が得られると仮定する。具体的には、図 4.2.3 で示される体系 図の赤点で示される位置、つまり、領域 10 の表面の点 A と点 B、領域 12 の表面の点 C と 点 D と設定した。これらの点は、現実的に放射化量の測定が実施することができる場所と して選定した。なお、バイアス因子法の適用にあたり、実験誤差及び計算手法起因の不確か さを設定する必要があるが、本検討においては、両者とも0であると仮定して検討を実施し

図 4.2.3 500MWe 級の沸騰水型原子力発電所を模擬した1次元円柱体系(再掲)

以降の節では、本検証体系においてランダムサンプリング法及び ROM を用いた放射化量の不確かさ評価結果について詳細を述べる。

4.2.2 ランダムサンプリング法を用いた場合

4.2.2.1 放射化解析の結果及び考察

本節では、1 次元円柱体系における構造材の ⁵⁹Co の放射化量分布について述べる。放射 化量の結果は図 4.2.4 に示す通りである。

図 4.2.4 構造材中の放射化量の分布

図 4.2.4 において、特に注目すべき点は生体遮蔽壁入口部分において放射化量が上昇して いる点である(図 4.2.5 に拡大図を示す)。これは、コンクリートが軽水素を含み減速性能に 優れているため、入射した中性子が減速されスペクトルが柔らかくなり、構造材中の ⁵⁹Co と反応を起こしやすくなる為である。参考として、⁵⁹Co の(n, γ)反応断面積を図 4.2.6 に示 す。⁵⁹Co の(n, γ)反応断面積の特徴としては、約 110~167eV に巨大共鳴が存在することであ る。

図 4.2.5 構造材中の放射化量の分布(生体遮蔽壁の部分拡大)

4.2.2.2 不確かさ評価結果及び考察

本節では、ランダムサンプリング法を用いて放射化量の不確かさを定量評価した結果について述べる。ランダムサンプリングにおけるサンプル数は 500 サンプルとした。ランダムサンプリングの出力結果が正規分布に従う場合、サンプル数を 500 とすると不確かさの相対統計誤差は $1/\sqrt{2(500-1)} = 3\%$ 程度となり、十分精度よく不確かさを評価することができる。

図 4.2.7 にランダムサンプリング法を用いて構造材の放射化量の不確かさを評価した結 果について示す。

図 4.2.7 構造材の放射化量の不確かさ評価結果

図 4.2.7 より、本計算条件においては、構造材における ⁵⁹Co の放射化量の不確かさは最大 でもおおよそ~25%程度であることが分かった。不確かさは炉心から離れるほど大きくなり、 特に生体遮蔽壁等の構造材において増加することが分かった。また、RV(格納容器)内の不確 かさの分布には特徴がありピークが生じている(図 4.2.8 は図 4.2.7 の拡大図)。これは、生 体遮蔽壁からの中性子の後方散乱のためであると考えられる。図 4.2.9 に RV(格納容器)内 の中性子スペクトルの図を示す。

図 4.2.8 RV(格納容器)の放射化量の不確かさ評価結果

図 4.2.9 RV(格納容器)内の中性子スペクトルの図

図 4.2.9 より、中性子が格納容器を 234.7cm→237.9cm→240.3cm→243.9cm→246.3cm と進む につれ、はじめは熱群のピークが消滅するが後半になるにつれ熱群のピークが再び現れる ことがわかる。つまり、生体遮蔽壁からの中性子の散乱により、格納容器の後半部分の放射 化量に影響を与えるため、格納容器内で放射化量の不確かさにピークが生じるようになる と考えられる。

4.2.2.3 不確かさ低減結果及び考察

本節では、ランダムサンプリング法を用いたバイアス因子法を用いて放射化量の不確か さを低減させた結果について述べる。図 4.2.3 で示された部位 A~D において測定値が得ら れるとして、それぞれの位置でのみ測定値が得られた場合のランダムサンプリング法を用 いたバイアス因子法の適用結果(不確かさの低減結果)を図 4.2.10 に示す(4 ケース)。

図 4.2.10 より、ケース a)においては部位 A 付近の不確かさは大きく削減されているが、生体外遮蔽壁においては、不確かさはあまり削減されていない。ケース b), c)について、不確かさの分布がほとんど同じであるのは、部位 B と部位 C の間の領域は気体部であるため、部位 B と部位 C の放射化量の値がおおよそ同じような傾向となるからである。ケース b)~ d)では、放射化量の不確かさはおおよそ~7%程度まで削減されている。

不確かさの低減の程度については式(3.4.3.19),(3.4.3.18)で示されるバイアス因子法の理論 式からわかるように図 4.2.3 で示された部位における放射化量との相関が大きいほど、不確 かさは大きく低減される。そこで、図 4.2.11 に図 4.2.3 で示された部位における放射化量と の各位置の放射化量の相関を示す。

$$\hat{\Sigma}_{E_R E_R} = \Sigma_{C_R C_R} - K \Sigma_{C_M C_R}$$

$$(3.4.3.19) (再揭)$$

$$K = \Sigma_{C_R C_M} (\Sigma_{C_M C_M} + \Sigma_{E_M E_M})^{-1}$$

$$(3.4.3.18) (再揭)$$

図 4.2.11 図 4.2.3 で示された部位における放射化量との各位置の放射化量の相関

図 4.2.11 より、部位 A と生体外遮蔽壁の放射化量の相関はあまり高くないことがわかる。 よって、ケース a)においては生体外遮蔽壁における放射化量の不確かさの低減の度合いが が小さいとわかる。一方、部位 B,C,D と生体遮蔽壁や生体外遮蔽壁の放射化量の相関は高 いため、不確かさが大きく削減できたと考えられる。

また、部位 A~D までの部位における放射化量の相関をすべて用いてランダムサンプリ ング法を用いたバイアス因子法を適用した内容について述べる。不確かさを低減するには 式(3.4.3.17)より部位 A~D までの部位における放射化量の分散共分散行列Σ_{C_MC_M}の逆行列を 計算する必要があるが、単純に分散共分散行列の逆行列を計算しようとすると、条件数(数 値解析のしやすさの尺度)が大きくなり計算することができない。一例として、今回実施し た検証計算について、放射化量の分散共分散行列を表 4.2.6 に示す。

	1	2	3	4
1	1.79E-07	4.06E-14	3.62E-14	2.12E-18
2	4.06E-14	3.47E-20	3.11E-20	2.20E-24
3	3.62E-14	3.11E-20	2.79E-20	1.97E-24
4	2.12E-18	2.20E-24	1.97E-24	1.47E-28

表 4.2.6 放射化量の分散共分散行列

表 4.2.6 の共分散行列の固有値を計算すると 1.786084E-07、4.601450E-20、3.818288E-24、 7.258819E-29 となる。そのため、逆行列を計算しようとすると、固有値間のオーダーが非常 に大きく異なるため、実質的なランク落ちが発生し逆行列を計算することが困難である。こ の原因は、部位 A~D までの部位における放射化量の絶対値が大きく異なるためである。そ こで、分散共分散行列ではなく相対分散共分散行列を用いてランダムサンプリング法を用 いたバイアス因子法を適用した結果を図 4.2.12 に示す。

図 4.2.12 放射化量の不確かさの低減の結果(測定点四か所)

図 4.2.12 より、部位 A~D までの部位における放射化量の相関をすべて用いてランダムサ ンプリング法を用いたバイアス因子法を適用することで放射化量の不確かさを~5%程度ま で効果的に削減することができた。特に領域 12 については、不確かさがほとんど存在して おらず、複数の点の放射化量の情報を用いることで効率的に不確かさを低減できることが 実証できた。

次に、ランダムサンプリング法を用いたバイアス因子法による不確かさの低減結果について、双子実験を用いて検証した結果について述べる。双子実験とは、ランダムサンプリングにより得られたあるサンプルを真値(測定値)であると仮定し、バイアス因子法の適用性を検証することのできる手法である。具体的には、次のような手順により検証を行う。

1) まず、500 サンプルの内1 サンプルを真値であると仮定し、式(3.4.3.17)に基づいて放射化 量の補正値を評価する。

2) 得られた補正値をR、式(3.4.3.19)で評価される補正後の不確かさをσとした場合、R±σの 範囲内に真値は存在するかを確認。

3) 500 サンプルの内、その他のサンプルを真値とした場合についても 1),2)と同様の評価を 行う(計 500 回)

4) 最終的に 500 サンプルの内何%が、真値が存在したかを評価する。例えば、真値が存在 する割合が著しく統計的に小さい場合には、適切に補正ができていないと判断できる。

$$\widehat{\boldsymbol{E}}_{R} = \boldsymbol{C}_{R} + \mathbf{K}(\boldsymbol{E}_{M} - \boldsymbol{C}_{M}) \tag{3.4.3.17} (\overline{\mathbf{P}} \mathbf{B})$$

以上の手順により評価した、補正後の不確かさの 1o内に存在している真値の割合を図 4.2.13 に示す。

図 4.2.13 1o内に入っている真値の割合

図 4.2.13 より、1の内に入っている真値の割合はどの領域でも、おおよそ 68~70%程度である。正規分布を仮定すると、1の内に収まるのは 68.27%であるため、図 4.2.13 の結果は統計的に妥当な結果となっている。以上により、ランダムサンプリング法を用いたバイアス因子法による不確かさの低減結果の妥当性が確認できた。

4.2.3 ROM を用いた場合

4.2.3.1 計算条件及び解析の流れ

本節では、ROM を用いた放射化量の相対感度係数及び不確かさの評価結果について述べる。計算体系・計算条件については、前節と同様である(表 4.2.1~表 4.2.3 及び図 4.2.1)。 ROM を適用するには、まず、巨視的核反応断面積の摂動に対する放射化量の感度の大きい 方向、すなわち Active Subspace(AS)を特定する必要がある。3 章の3 節で述べた通り、本研 究においては、構造材の全体の放射化量の AS を、一部の代表的な地点の放射化量の相対感 度係数ベクトルから近似的に作成した。具体的には、図 4.2.1 あるいは表 4.2.3 における、 ⁵⁹Coの放射化が起こりうる構造材であるシュラウド(領域 3)、クラッド(領域 5)、RV(領域 6)、 RCV(領域 8)、生体遮蔽壁(領域 10)、生体外遮蔽壁(領域 12)の 6 つの構造材の内側部分と、 中央部分、外側部分の計 18 か所を代表地点とした。代表点の放射化量の相対感度係数ベク トルについては、名古屋大学で開発された離散座標法に基づくコードを用いて、随伴計算を 利用し(1 次)摂動論により評価することとした。ROM の放射化解析への適用の一連のフロ ーは次の通りである。

- 随伴計算を活用した(1次)摂動論により、代表点の放射化量の相対感度係数ベクトル(計 18種)を評価
- ② 得られた 18 種の放射化量の相対感度係数ベクトルを行方向へ並べた相対感度係数行列 (18 行×4975 列(==12(領域)×2(断面積タイプ)×199(群数)+199(⁵⁹Co の(n,γ)反応断面積):本 体系における断面積の種類))を作成し、特異値分解
- ③ 相対的に十分小さい特異値がある場合、AS である V = [v₁, v₂ v₁₈]の次元を削減(詳細 は次節)
- ④ 基底方向**v**_iへの摂動量Δα_iを 0.01 として、摂動後の巨視的反応断面積セットを評価。
- ⑤ 各基底に対する摂動後の巨視的反応断面積セットに対して中性子輸送計算を実施し、直接法により基底方向の摂動に対する放射化量の相対感度係数行列G(R ← α)を評価
- ⑥ 式(3.3.2.12)を用いて基底方向の摂動に対する放射化量の相対感度係数行列 $G(R \leftarrow \alpha)$ を 巨視的核反応断面積に対する放射化量の相対感度係数行列 $G(R \leftarrow \Sigma)$ を変換

$$\boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\Sigma}) = \boldsymbol{G}(\boldsymbol{R} \leftarrow \boldsymbol{\alpha}) \boldsymbol{V}_{r}^{t}$$
(3.3.2.12) (再揭)

⑦ 得られた相対感度係数行列と断面積相対共分散行列より、式(3.2.1.2)を用いて任意の位置の放射化量の不確かさを評価

4.2.3.1 感度係数及び不確かさ評価の結果と考察

(1 次)摂動論により評価した 18 種の放射化量の相対感度係数行列を特異値分解すること で得られた特異値は、図 4.2.14 に示すとおりである。

図 4.2.14 より、特異値は成分により大きな差異が存在することがわかる。そこで、AS の構築にあたって、用いる基底の数を3つの場合に分けることとした。

Case A:1 以上の特異値に対応する3つの基底(AS:3dim)

Case B: 10⁻¹以上の特異値に対応する 10 つの基底(AS:10dim)

Case C: すべての基底(AS:18dim)

まず、例としてシュラウド内部の 183cm 地点の放射化量の相対感度係数ベクトルの評価 結果を図 4.2.15 に示す。ただし、横軸の断面積 ID については、1 番目の領域の吸収断面積 (1~199 群)、散乱断面積(1~199 群)、2 番目の領域の吸収断面積(1~199 群)、散乱断面積(1~199 群)、、、12 番目の領域の吸収断面積(1~199 群)、散乱断面積(1~199 群)の順に並んでおり、 最後に⁵⁹Coの(n,γ)反応断面積(1~199 群)が割り当てられている。また、図中の Reference は、 随伴計算を利用して(1 次)摂動論により算出した。

89

Case C: 18 次元

図 4.2.15 シュラウド内部の 183cm 地点の放射化量の相対感度係数ベクトル

図 4.2.15 より、183cm 地点のシュラウド(領域 3)における ⁵⁹Co の放射化量の相対感度係数 は次元を増やすほど参照解に近づくことがわかるが、10 次元程度でほとんど再現できるこ とがわかった。

なお、⁵⁹Coの放射化量の相対感度係数については、領域2(シュラウド内側冷却材)の吸収 断面積の189群、領域2(シュラウド内側冷却材)の散乱断面積の189群、領域3(シュラウド) の散乱断面積の189群、⁵⁹Coの(n,γ)反応断面積の150群、189群が相対的に大きい。

次に、ROM により評価された感度係数を用いて、構造材放射化量の不確かさを評価した 結果を図 4.2.16 に示す。図中の Reference はすべての構造材メッシュ点において(1 次)摂動 論により放射化量の相対感度係数を算出し、放射化量の不確かさを評価したものである。

図 4.2.16 ROM を用いた放射化量の不確かさ評価結果

図 4.2.16より、放射化量の不確かさは次元を増やすほど参照解に近づくが、10次元程度でおおよそすべての構造材中の放射化量の不確かさを再現することができた。3次元程度では、領域10(生体遮蔽壁)、12(生体外遮蔽壁)の放射化量の不確かさはある程度再現できるが、領域3(シュラウド)、5(クラッド)、6(RV)の放射化量の不確かさはほとんど再現できていない。これは、特異値分解において、ASの基底が元の行列をできるだけ保持するように順に構築されることに起因する。元の行列とは、今回の場合、放射化量の相対感度係数ベクトルを行方向へ並べた相対感度係数行列であるが、相対感度係数ベクトルのL2ノルムは、一般的に炉心から離れた構造材の方が大きい。そのため、相対感度係数ベクトルを再現することが優先されている。よって、図 4.2.16の Case: 3 次元のように比較的炉心に近い部分の構造材の放射化量の不確かさの再現性は悪い。ただし、一般的には放射化量の不確かさが大きい部分の再現性が優先されるため、実用的には問題がないと考えられる。

4.2.4 ROM の導入による計算コストの削減

本節では、ROMの導入による放射化解析の計算コストの低減について述べる。本検討に おいては、巨視的核反応断面積の種類は 4975(=12(領域)×2(断面積タイプ)×199(群 数)+199(⁵⁹Coの(n, y)反応断面積))つである。そのため、直接法を用いて放射化量の不確かさ を評価する場合、4976(4975(摂動計算)+1(摂動させていない通常の計算))回の中性子輸送計 算が必要となる。また、⁵⁹Coの放射化が起こりうる構造材(シュラウド(領域 3)、クラッド(領 域 5)、RV(領域 6)、RCV(領域 8)、生体遮蔽壁(領域 10)、生体外遮蔽壁(領域 12))の合計メッ シュ数は 908 である。よって、(1次)摂動論を用いて構造材中の放射化量の不確かさの詳細 分布を評価する場合、909(908(adjoint 計算)+1(摂動させていない通常の forward 計算))回の中 性子輸送計算が必要となる。また、ランダムサンプリング法で放射化量の不確かさを評価す る場合は、統計誤差の観点より、数百回程度の計算が必要となり、本検討では 500 サンプル とした。一方、本研究で開発した ROM を用いた手法では、29(18(摂動論による AS 構 築)+10(AS 方向への感度解析)+1(摂動させていない通常の計算))回の中性子輸送計算で放射 化量の不確かさ評価が可能となる。各手法における本検討における計算コストをまとめる と表 4.2.7 のようになる。

不確かさ評価手法	計算コストに依存するパラメータ	中性子輸送計算回数
直接法	巨視的断面積の数	4976
(1 次)摂動論	メッシュ総数	909
ランダムサンプリング法	サンプル数	500
ROM	AS の次元	29

表 4.2.7 それぞれの不確かさ評価手法による計算コスト

表 4.2.7 より、放射化量の不確かさ評価手法としての ROM の優位性がわかる。なお、多次 元体系においては、今回検討を行った1次元体系に比べ、巨視的断面積の数やメッシュ総数 が急激に増加するため、直接法や摂動論で構造材中の放射化量の不確かさの詳細分布を求 めることは実用上ほぼ不可能であると考えられる。次節では、2次元 r-z 体系において、ROM を用いて構造材の放射化量の不確かさを評価した結果及び考察について述べる。

4.3 2次元 r-z 体系における ROM を用いた不確かさ評価及び不確かさ低減

4.3.1 解析体系及び条件

本節では、多次元体系である 2 次元 r-z 体系において、ROM を用いて構造材の放射化量の不確かさを評価した内容について述べる。図 4.3.1 に対象とする 2 次元 r-z 体系について示す。なお、図 4.3.1 で示した計算体系については、福島第一原子力発電所の原子炉周囲の構造材を参考にして設定している[40]。

92

図 4.3.1 検証対象とする 2 次元 r-z 体系

図 4.3.1 について、白抜きの領域は空気の領域である。炉心、冷却材、圧力容器、生体遮蔽 壁、空気の各領域の組成や温度については、表 4.2.1、表 4.2.2、表 4.2.3 における、領域 1(燃 料集合体領域)、領域 2(シュラウド内側冷却材)、領域 6(圧力容器)、領域 10(生体遮蔽)、領域 8(生体遮蔽-生体遮蔽外壁ギャップ)と同様であり、実効断面積は各領域の平均弦長を考慮し 作成した。

中性子遮へい計算(forward 計算)及び随伴計算(adjoint 計算)については名古屋大学で開発 された離散座標法に基づく 2 次元 r-z 座標の中性子輸送計算コードにより、炉心領域に ²³⁵U の核分裂スペクトルを模擬した固定中性子源を設置し固定源計算を実施した。中性子遮へ い計算の計算条件は表 4.3.1 に示される通りである。本検討においては、離散座標法の差分 法として、メッシュ分割に対する近似精度のあまり高くないステップ差分法を採用してい る。これは、図 4.3.1 の 2 次元体系が空気の領域等を含むことから収束性が非常に悪いこと がわかり、負の中性子束を算出しない数値計算上の安定性の優れている差分法を要したた めである(2.4.2 節)。

散乱次数	P ₆
S _N 分点の次数	S ₁₆
角度分点セット	Triangular Chebychev-Legendre
差分法	ステップ差分
上下境界条件	真空
右側境界条件	真空
r方向メッシュ分割数	100
z方向メッシュ分割数	200
メッシュ間隔[cm]	10
収束条件	10-5
エネルギー群数	199 群
thermal cutoff energy	3.93eV
熱群のエネルギー群数	35 群
加速法	CMFD

表 4.3.1 中性子遮へい計算の計算条件

構造材の放射化反応としては、圧力容器と生体遮蔽壁内で起こる ⁵⁹Coの放射化反応を考慮した。核反応断面積の共分散データについては、すべての構造材核種の散乱及び捕獲核反応断面積と ⁵⁹Coの(n,γ)反応断面積の共分散を考慮した。なお、放射化量の不確かさ評価に要する断面積の分散共分散行列については、4.2.1節を参照のこと。

多次元体系では一回当たりの中性子輸送計算の計算コストが大きくなるため、少数の地 点の放射化量の感度係数ベクトルから AS を構築する必要がある。そこで、本検討では、図 4.3.1の黄色の▲点で示された2地点のみの放射化量の感度係数ベクトルから AS を構築し、 どの程度放射化量の相対感度係数を再現できるかを検討した。なお、2 地点の放射化量の感 度係数ベクトルは名古屋大学で開発された離散座標法に基づくコードを用いて、随伴計算 基づく(1 次)摂動論により評価した。感度係数の参照解については計算コストが膨大となる ことから、図 4.3.1 の黄緑色■で示される一部の地点(③~⑩の点)のみ(1 次)摂動論により評 価した。

また、バイアス因子法により、ROM で評価された構造材の放射化量の不確かさをどの程 度削減できるかを検証した。実験値が得られると仮定する位置は、図 4.3.1 の紺色の●点で 示されている通りである。実験値が得られるとする点の放射化量の相対感度係数ベクトル についても名古屋大学で開発された離散座標法に基づくコードを用いて随伴計算を実施し (1 次)摂動論により算出した。なお、バイアス因子法の適用にあたり、実験誤差及び計算手 法起因の不確かさを設定する必要があるが、本検討においては、両者とも0であると仮定し て検討を試みた。

図 4.3.1 における各点のメッシュ位置の詳細は表 4.3.2 に示す通りである。

	番号	r 方向メッシュ位置[cm]	z 方向メッシュ位置[cm]
AC た構筑する占	(1)	550	1900
AS を 博築 り る 点	2	300	1450
	3	300	1800
	4	900	1800
	5	360	1520
参昭韶を並める占	6	150	1210
② 忠府を不のる点	\overline{O}	900	1000
	8	320	800
	9	250	170
	10	800	170
実験値が得られる 点	1	320	1050

表 4.3.2 図 4.3.1 の点の詳細(位置)

4.3.2 放射化解析の結果及び考察

本節では、2次元 r-z 体系における構造材の ⁵⁹Coの放射化量分布について述べる。放射化量の結果は図 4.3.2 に示す通りである。また、4.2節の1次元体系の場合と同様に、固定中性子源には核分裂スペクトルの値をそのまま用いており、計算結果である中性子束や放射化量の絶対値には意味は無い(放射化量の不確かさは、4.2.1節でも述べたが、放射化量の絶対値が無くとも評価できる)。

図 4.3.2 2 次元 r-z 体系における構造材の ⁵⁹Co の放射化量分布[単位:reaction/s]

図 4.3.2 より、2 次元 r-z 体系における構造材の放射化量は炉心側面付近の構造材において

比較的高くなっていることがわかる。これは、炉心から発生した中性子が冷却材の薄い径方 向から漏れ出て、構造材中を浸透していくためである。また、中性子は遮蔽性能の低い気体 部分を伝って炉外に漏洩するため、放射化量が気体部周辺で比較的高くなっていることが 特徴的である。

4.3.3 感度係数及び不確かさ評価の結果と考察

本節では、ROM により評価された放射化量の相対感度係数及び不確かさについて示す。 まず、放射化量の相対感度係数ベクトルの評価結果を図 4.3.3 に示す。ただし、横軸の断面 積 ID については、炉心、冷却材、圧力容器、気体部、生体遮蔽壁の領域の順にそれぞれの 領域の吸収断面積(1~199 群)、散乱断面積(1~199 群)が並んでおり、最後に ⁵⁹Co の(n,γ)反応 断面積(1~199 群)が割り当てられている。また、また、図中の Reference は③~⑩の地点に ついて随伴計算を利用して(1 次)摂動論により算出した。

図 4.3.3 より、炉心付近の放射化量の相対感度の精度はあまりよくないが、それ以外の生体 遮蔽壁等の放射化量の相対感度は、図 4.3.1 で示された 2 点の放射化量の相対感度係数から AS を構築することで感度を精度よく評価できることが分かった。2 点の感度係数ベクトル から作成した AS を用いることで感度をおおよそ再現できるのは、ROM が構築した AS の 方向へ感度解析を行うことに起因する。以下に 3 章で説明した感度係数ベクトルの線形結 合の式(3.3.3.1)を再掲するが、式(3.3.3.1)のように構造材内のすべての位置の放射化量の感度 係数ベクトルがある 2 点の代表点の放射化量の感度係数ベクトルの定数倍で表せるとする と、AS の基底は 2 本となる。つまり、仮に以上のような仮定が成立する場合、ROM を用い た感度解析により、2 回の摂動計算により全構造材の放射化量の相対感度を評価できる。

$$g_{x_2} \approx c_2 g_{x_1} + (1 - c_2) g_{x_5}$$

$$g_{x_3} \approx c_3 g_{x_1} + (1 - c_3) g_{x_5}$$

$$g_{x_4} \approx c_4 g_{x_1} + (1 - c_4) g_{x_5}$$

式(3.3.3.1) (再掲)

図 4.3.4 で示される生体遮蔽壁の異なる位置における放射化量の相対感度係数を見てみる と、絶対値の大きさは異なるものの、相対的な形が似ていることがわかる(例えば地点④の 相対感度係数と地点⑨の相対感度係数)。すなわち、本問題における実質的な AS の基底は 非常に少ないと考えることができる。よって、ROM を適用することにより、非常に低計算 コストでおおよその感度係数ベクトルを評価できたと考えられる。

次に、ROM により評価されたすべてのメッシュの放射化量の相対感度係数より構造材中の放射化量の不確かさの詳細分布を図 4.3.4 に示す。

図 4.3.4 ROM により評価された構造材放射化量の不確かさ[単位:%]

図 4.3.4 より、構造材の放射化量の不確かさはおおよそ~15%程度であるとわかった。計算 時間の観点より、全領域の放射化量の reference の不確かさと比較することはできないが、 定性的な観点から ROM により体系周辺部において不確かさが増加することも確認できる。 ただし、炉心付近の放射化量の不確かさについては、感度係数の再現の精度がよくないこと から、誤差を含んでいると考えられる。

図 4.2.16 の 1 次元体系の場合の結果と比較し、不確かさが小さい理由としては、1 次元 体系では径方向にしか中性子は移動しないが、2 次元体系では軸方向に中性子が移動するた め、中性子が遮蔽性能の低い構造材を伝って構造材に浸透していくことにより、中性子束の 不確かさが小さくなることが考えられる。

4.3.4 不確かさ低減結果及び考察

本節では前節で得られた放射化量の不確かさの結果に対し、図 4.3.1 の紺色で示される点の放射化量の情報を用いてバイアス因子法により、不確かさの低減を試みた。バイアス因子法の適用結果を図 4.3.5 に示す。

図 4.3.5 バイアス因子法により低減した構造材放射化量の不確かさ[単位:%]

図 4.3.5 より、放射化量の不確かさは不確かさ低減前の~15%程度から、おおよそ~7%程度まで削減することができた。特に図 4.3.1 の紺色で示される実験値が得られる点の放射化量との相関の高いと考えられる生体遮蔽壁においては~1%程度まで放射化量の不確かさを大きく削減することができた。このように、ROMを用いることにより、放射化量の不確かさを評価するだけでなく、放射化量の解析値の補正をすることができることが実証できた。

4.3.5 ROM の導入による計算コストの削減

本節では、2次元 r-z 体系における ROM の導入による放射化解析の計算コストの低減に ついて述べる。本検討においては、巨視的核反応断面積の種類は2189(=5(領域)×2(断面積タ イプ)×199(群数)+199(⁵⁹Co の(n, γ)反応断面積))種であり、メッシュ総数は20000(=100(r 方向 メッシュ分割数)×200(z 方向メッシュ分割数))である。よって、構造材放射化量の不確かさ の詳細分布を求めるためには、直接法では2190=(2189+1(摂動させていない通常の計算))回、 (1次)摂動論では20001(20000+1(摂動させていない通常の計算))回の中性子輸送計算が必要 となるが、実質的に不可能である。より詳細な3次元体系で不確かさ評価をする場合には、 1回あたりの中性子輸送計算にさらに時間がかかるようになるだけでなく、必要となる感度 解析の数もさらに多くなるため、より放射化量の不確かさを評価することが困難となる。一 方の本研究により開発した ROM では、本体系においては、感度解析の数は2回である程度 放射化量の感度係数ベクトルを再現することができた。より詳細な3次元体系においても、 AS の効率的な構築さえできれば、実用的に使用可能な有効な手法であると考えられる。

4.4 本章のまとめ

本章では、様々な手法により構造材放射化量の不確かさを評価し、また、バイアス因子 法により不確かさの低減を試みた。

4.2 節では 500MWe 級の沸騰水型原子力発電所を模擬した 1 次元円柱体系において、ラ ンダムサンプリング法により、⁵⁹Co の(n, γ)反応に起因する放射化量の不確かさを評価し、 その傾向について考察した。その結果、不確かさは炉心から離れるほど大きくなり、不確 かさのオーダーとしては数十%程度であることが分かった。また、計算コストの削減を目 的として開発した ROM を用いた手法を 1 次元体系に適用し、その性能の確認を行った。1 次元体系においては、AS を構造材の代表点(計 18 点)から構築することにより、直接法で は 4976 回、(1 次)摂動論では 909 回必要であった感度係数評価に掛かる中性子輸送計算の 計算コストを、29 回まで大きく削減することができた。

4.3節では、実際の原子力発電所の放射化解析で用いられる 2 次元 r-z 体系に ROM を適 用し、構造材の放射化解析及び不確かさ評価を試みた。その結果、試験的に 2 点のみの代 表点から AS を構築し感度解析することで、生体遮蔽壁中の放射化量の感度係数及び不確 かさをある程度再現することを確認した。つまり、直接法では 2189 回、(1 次)摂動論では 20000 回必要であった感度係数評価に掛かる中性子輸送計算の計算コストを、一部炉心付 近の感度係数の再現性は高くないが、3 回まで削減することができた。これにより、多次 元体系においても計算コストを大きく削減することができるという ROM の実用性を確認 した。

以上のことから、従来の手法、具体的には直接法や摂動論を用いる方法では、多次元体 系かつ詳細な計算条件になるほど感度解析の計算コストが膨大となり、不確かさの評価が 実施困難であったが、本研究で開発した ROM では、実用的な計算コストにおいて放射化 量の不確かさを評価することができる可能性があることを示した。

第5章 結論

5.1 まとめ

本節では、本修士論文のまとめについて述べる。第1章では、原子炉の廃止措置に関わ る背景と本研究の目的について示した。原子力発電所の廃止措置においては、特に Co、Eu の放射化が問題となっており、これらの放射性核種がどの程度構造材中に存在するかを把 握する必要がある。現在、放射線検出器による測定では、非常に多くの構造材の放射能を測 定するためコストが膨大となる等の問題が存在しており、数値シミュレーション(放射化解 析)によって原子炉構造材の放射化量を把握することが求められている。しかし、放射化解 析によって評価された放射化量の結果には、大きな不確かさが存在することがわかってお り、放射化量の不確かさを定量的に評価しなければならない。一般に、放射化解析は、空間 的に大きな体系を対象とするため、1 回の放射化解析に非常に計算時間がかかり、従来の入 カパラメータの不確かさに起因する放射化量の不確かさ定量評価手法(ランダムサンプリン グ法、直接法、摂動論等)を適用することは困難である。そこで、本研究では、Reduced Order Modeling(ROM)法と呼ばれる手法に着目し、低計算コストで入力パラメータの不確かさに起 因する放射化量の不確かさを定量評価することのできる新たな手法の開発を目的とした。 また、放射化量の不確かさを定量的に評価するだけでなく、一部の構造材の位置の実験値を 取り入れることで、放射化量の解析値を補正し不確かさを低減させるバイアス因子法と呼 ばれる手法の適用性の検討を第2の目的とした。

第2章では、原子炉構造材の放射化解析の基本原理と解析フローについて述べた。とりわ け、断面積処理と離散座標法を用いた中性子遮へい計算に着目し解説した。断面積の多群化 においては、反応率を保存するように実効断面積を評価する必要がある。しかし、実効断面 積の評価には中性子束が必要であるため、等価原理と呼ばれる手法を用いて、近似的に着目 している体系の中性子束のひずみを評価し、実効断面積を評価する。また、放射化解析にお ける中性子遮へい計算は、着目している体系により、確率論的手法と決定論的手法が使い分 けられる。一般的には、決定論的手法である離散座標法と呼ばれる手法が用いられるが、ダ クト部等の中性子ストリーミングが予想される部位には確率論的手法であるモンテカルロ 法が用いられる。 離散座標法を用いた中性子遮へい計算については、 一般的な 2 次元 x-y 体 系に着目し、ボルツマン輸送方程式における角度中性子束の球面調和関数展開から説明し た。離散座標法の大きな特徴は、中性子の飛行方向を離散化し、離散化された方向へのボル ツマン輸送方程式を解くことである。離散座標法の差分式は、メッシュ平均の角度中性子束 が入射角度中性子束と流出角度中性子束の平均となるという関係式を用いることによって 導出でき(ダイヤモンド差分近似)、その他の差分法の長所と欠点についても述べた(ステッ プ差分、zero-fixed up 法)。さらに、実際の数値解析における、transport sweep の実施方法や 離散座標法で一般的に用いられる反復法の加速法である CMFD 加速法についても原理を述 べた。

第3章では、まず、原子炉構造材の放射化量の不確かさ定量評価手法について、詳細を述 べた。一般的な入力パラメータの不確かさ定量評価手法としては、ランダムサンプリング法、 直接法、摂動論が挙げられる。直接法及び摂動論の計算コストは、それぞれ入力パラメータ、 出力パラメータに依存しており、実用的な放射化解析においては適用が困難である。ランダ ムサンプリング法の計算コストは、サンプル数に依存するため、直接法及び摂動論と比較す ると放射化解析へ適用しやすいが、それでもなお、統計誤差の観点より数百サンプル程度実 施することが望ましく、適用は実質的に困難である。なお、ランダムサンプリング法には、 感度係数が精度よく評価できないという問題もある。そこで、本研究では、計算コストを大 幅に削減することを目的として、ROM(Reduced Order Modeling)を用いた新たな放射化量の 不確かさ定量評価手法を開発した。ROM は、感度解析において有意な入力パラメータの摂 動方向(Active Subspace,AS)を特定することで感度解析に掛かる計算コストを削減する手法 であり、本研究においては AS を構造材の代表点の放射化量の感度係数ベクトルから構築す ることで、計算コストを大幅に削減する手法を提案した。また、計算値の相関関係と実験値 を用いて、評価された放射化量の不確かさを低減し、計算値の精度を向上するバイアス因子 法についても解説した。本章においては、2 つのバイアス因子法、拡張バイアス因子法とラ ンダムサンプリング法を用いたバイアス因子法、について理論式の導出を行った。ランダム サンプリング法を用いたバイアス因子法では、感度係数を直接評価せずとも、ランダムサン プリングにより得られたサンプルの結果を統計処理することにより、補正が行える特徴に ついて解説した。

第4章では、第3章で説明を行った手法を用いて、構造材放射化量の不確かさ評価及び 低減を実施した検証結果について述べた。検証体系としては、原子力発電所を模擬した1次 元円柱体系と2次元 r-z体系を考えた。1次元円柱体系における放射化量の不確かさ評価結 果の特徴としては、炉心から離れるほど不確かさが大きくなり、放射化量の不確かさ定量評価 手法では、29回程度の計算(中性子輸送計算)で、参照値をほとんど再現することができた。 直接法では4956回、(1次)摂動論では、909回の中性子輸送計算が必要となるので、不確か さ評価に掛かる計算コストを削減できたと考えられる。また、ランダムサンプリング法を用 いたバイアス因子法による放射化量の不確かさの低減効果の検証は双子実験により実施し た。その結果、生体遮蔽壁、生体外遮蔽壁の入口及び出口部分で実験値が得られると仮定す ることで、放射化量の不確かさを~5%程度まで効果的に削減することができた。2次元 r-z 体系における検証では、ROMを用いて構造材全体の放射化量の不確かさ定量評価し、一部 の構造材位置の参照解と比較した。ASは、実用的な計算時間を考え、試験的に構造材の代 表的な2点のみを用いて構築した。その結果、3回の計算(中性子輸送計算)で、炉心付近の 放射化量の感度係数には差異が認められるが、生体遮蔽壁中の放射化量の感度係数はおお よそ再現することができた。構造材の放射化量の不確かさについては、おおよそ~15%程度 であるとわかった。直接法では2189回、(1次)摂動論では20000回の中性子輸送計算が必要 となるので、不確かさ評価に掛かる計算コストを非常に大きく削減できたとわかる。感度解 析における計算コストを大きく削減できた理由としては、構造材内の放射化量の感度係数 ベクトルが非常に少ない代表点の放射化量の感度係数ベクトルで近似的に表現でき、ROM が適用しやすい問題であったからである。なお、バイアス因子法により、ROM で評価され た放射化量の不確かさをおよそ~7%程度まで削減することができることも確認することが できた。

5.2 今後の課題

原子炉構造材の放射化量の不確かさ評価における今後の課題としては、次のような内容 が考えられる。

① Active Subspace の効率的な作成方法の検討

多次元体の放射化解析へ ROM を適用することを考えると、AS を構築する代表点を どのように選択するかがキーポイントとなる。AS を構築する代表点は少なければその 分感度解析にかかる計算コストが少なく済むが、誤差は大きくなる。実用的には、次 のような手順で ROM を適用することが1つの方法として考えられる。

- i) (1次)摂動論により、いくつかの物理的な代表点における放射化量の感度係数 を評価し、ASを構築する
- ii) ROM に基づく感度解析を実施し、構造材のすべての位置の放射化量の感度係 数を評価
- iii) いくつかの検証地点を設け、(1次)摂動論によりその地点の放射化量の感度係数を評価
- iv) ii)とiv)の結果を比較し、ほとんど同じであれば、ii)の結果を採用。そうでなければ、iii)の地点も代表点に加え、ASを更新。
- v) 新たな AS の基底方向の感度解析を実施し(すでに分かっている基底方向の感度 係数は前回のものを使用)、構造材のすべての位置の放射化量の感度係数を評価。そして、再度 iii)へ移行する。

以上の計算手順において、課題となるのは、代表地点と検証地点の設定の仕方である。より、効率的な AS の構築には、この代表地点と検証地点の設定の仕方に、規則性を設ける必要があると考えている。

② 核種組成起因の放射化量の不確かさ定量評価

入力パラメータの不確かさとしては、核反応断面積の不確かさ以外に、核種組成の 不確かさも存在している。核反応断面積の不確かさは精力的に研究が行われ、核デー タライブラリに評価されているが、核種組成の不確かさは、一般的には、規格値を用 いることとなる。しかし、例えば、原子力発電所の生体遮蔽壁は、経年により、水が 蒸発することがあるため、規格値の不確かさを用いて放射化量の不確かさを評価して も、実際の原子力発電所に適用できる評価結果とはならない可能性がある。そのた め、以上のような実質的な組成の不確かさも考慮した放射化量の不確かさ定量評価 を、本検討で開発した ROM やランダムサンプリング法を用いて実施する必要がある。

超多群断面積を用いた中性子遮へい計算

決定論的手法を用いた中性子遮へい計算では、実効断面積を用いるが、2章で述べた ように、中性子のひずみは、幾何形状、配列等に依存し、中性子遮蔽計算が対象とす る体系を正確に反映した実効断面積を作成することは困難となる。4章の1次元体系に おける領域の実効断面積は、領域の平均弦長を用いて近似的に作成しているが、例え ば、実際には生体遮蔽壁領域の隣の生体外遮蔽壁領域の中性子束のひずみは、生体遮 蔽壁領域に依存しているが、このような効果は反映することができていない。そこ で、断面積の近似が与える放射化解析への影響を評価するため、(近似が非常に微小な) 超多群断面積を用いた中性子遮へい計算を実施し、比較検討することが課題として挙 げられる。

参考文献

- 1. M. Kinno, K. Kimura, T. Nakamura, "Raw Materials for Low-Activation Concrete Neutron Shields," *J. Nucl. Sci. Technol*, 39(12), pp.1275-1280(2002).
- 2. 藤倉 裕介,西田 浩和,片寄 哲務,木村 健一,"混和材を用いた低放射化コンクリート の耐久性に関する検討",コンクリート工学年次論文集,Vol.30(1), pp141-146, (2008).
- 3. "コンクリートキャスク用低放射化・高性能材料の開発",電力中央研究所報告, N04033, (2005).
- 4. A. Yamamoto, K. Kinoshita, T. Watanabe, et al., "Uncertainty quantification of LWR core characteristics using random sampling method," *Nucl. Sci. Eng.*, 181(2), pp. 160-174 (2015).
- 5. I. Kodeli, "Multidimensional Deterministic Nuclear Data Sensitivity and Uncertainty Code System: Method and Application," *Nucl. Sci. Eng*, 138, pp. 45-66 (2001).
- G. Chiba, Y. Kawamoto, M. Tsuji, "Estimation of neutronics parameter sensitivity to nuclear data in random sampling-based uncertainty quantification calculations," *Ann. Nucl. Energy.* 75, pp. 395-403,(2015).
- 7. Y. Bang, H. Abdel-Khalik, M. Jessee, et al. "Hybrid reduced order modeling for assembly calculations," *Nucl Eng Des.* 295, pp. 661–666,(2015).
- 8. M. Abdo, H. Abdel-Khalik, "Development of multi-level reduced order modeling methodology," *Proceedings of ANS Annual Meeting 2015*, San Antonio, TX, Jun. 7-11, 2015, pp445-448.(2015)
- M. Abdo, H. Abdel-Khalik, "Efficient active subspace identification via MLROM," *Proceedings* of *PHYSOR-2016*, Sun Valley, May. 1–5,2016.
- M. Jessee, P. Turinsky, H. Abdel-Khalik, "Efficient subspace methods-based algorithms for performing sensitivity, uncertainty, and adaptive simulation of large-scale computational models." *Nucl Sci Eng.* 159, pp. 256–272,(2008)
- 11. M. Abdo, Multi-level reduced order modeling equipped with probabilistic error bounds [Ph.D. thesis], North Carolina State University, North Carolina (2016).
- 12. D. Huang, H. Abdel-Khalik, C. Rabiti, et al., "Dimensionality reducibility for multi-physics reduced order modeling," *Annals of Nuclear Energy*. 110. pp526-540, (2017).

13. R. Katano, T. Endo, A. Yamamoto, et al., "Estimation of sensitivity coefficients of core characteristics based on reduced-order modeling using sensitivity matrix of assembly characteristics," *J. Nucl. Sci. Technol*, 54(6), pp.637-647(2017).

14. 久語輝彦, "核特性予測値の不確かさの評価と低減のための拡張バイアス因子法に関する研究,"大阪大学博士論文, (2007).

15. T.Endo, A.Yamamoto, T.Watanabe, "Bias factor method using random sampling technique" *J. Nucl. Sci. Technol*, 53(10), 1494-1501 (2016).

16. 白鳥芳武, 川越慎司, 松井祐二, 東浦則和, 岩崎誠司, "ふげん発電所の廃止措置のため

の放射化量評価,"サイクル機構技報,16,(2009).

17. 宇根崎博信,"実効断面積計算手法の基礎(超入門),"第 36 回炉物理夏期セミナーテキスト, pp141-120, (2004).

18. "放射線遮蔽ハンドブックー基礎編ー", 一般社団法人日本原子力学会, ISBN 978-4-89047-161-4, (2015).

19. K. Shibata, O. Iwamoto, T. Nakagawa et al, "JENDL-4.0: A New Library for Nuclear Science and Engineering," *J. Nucl. Sci. Technol.* 48, 1 (2011).

20. K. Okumura, "Nuclear Data for Prediction of Isotope Generation and Depletion," *Proceedings of the 2011 Symposium on Nuclear Data*, Ricotti, Tokai, Japan, Nov. 16-17, 2011, JAEA-Conf 2012-001, pp.39-44 (2012).

21. TRANSX 2: A Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes, LA-12312-MS (1992).

22. PARTISN: A Time-Dependent, Parallel Neutral Particle Transport Code System, LA-UR-08-07258 (2008).

23. 小林啓祐,"原子炉物理,"コロナ社,東京都,ISBN 4-339-06583-8, (1996).

24. 寺沢寛一,"自然数学者のための数学概論,"岩波書店,東京都, ISBN 9784000054805, (1983).

25. 吉田晶樹,"地球物理学のための球面調和関数ノート第 1.0 版,"

http://yoshida-geophys.jp/miscel/legendr_ver100.pdf (2007).

26. G. Longoni, A. Haghighat, et al., "Investigation of new quadrature sets for discrete ordinates method with application of non-conventional problems," *Proc. 2001 ANS Summer Meeting*, June 17-21, Milwaukee, WI, (2001).

27. K. Smith, "Nodal Method Storage Reduction by Non-linear Iteration," *Trans. Am. Nucl. Soc.*, 44, pp.265-266 (1983).

28. 川田昌克, "Scilab で学ぶわかりやすい数値解法,"森北出版, 東京都,

ISBN 9784627096110,(2008).

29. 山本章夫, "拡散方程式の数値解法の基礎", 第 36 回炉物理夏期セミナーテキスト, pp47-80, (2004).

30. 木下国納," ラテン超方格サンプリング法を用いた BWR 炉心特性の不確かさ評価,"名 古屋大学卒業論文, (2014).

31. 伊藤基尋,"ランダムサンプリング法に基づくバイアス因子法の沸騰水型原子炉への適 用",名古屋大学卒業論文,(2017).

32. N.H. Larsen, "Core Design and Operating Data for Cycle 1 and 2 of Peach Bottom 2", NP-563, Electric Power Research Institute (1978).

33. J.F. Carew, K. Hu, A. Aronson, et al., "PWR and BWR Pressure Vessel Fluence Calculation Benchmark Problems and Solutions", NUREG/CR-6115 BNL-NUREG-52395, Brookhaven National
Laboratory (2001).

34. 小山 謹二, 奥村 芳弘, 古田 公人, 他, "遮蔽材料の群定数—中性子 100 群・ガンマ線 20 群・P5 近似—," JAERI-M 6928, 旧・日本原子力研究所 (1977).

35."Reactor Physics Constants," ANL-5800 Second Edition, Argonne National Laboratory (1963).

36."Contaminant building BWR Mark-I", http://www.nuclear-power.net/nuclear-power-plant/containment-building/ (2017).

37. 山本章夫, "軽水炉と高速炉の比較", 第 42 回炉物理夏期セミナーテキスト, 原子炉物理の観点から, pp78-107, (2010).

 SCALE Code System, ORNL/TM-2005/39, Version 6.2.1, Oak Ridge National Laboratory (2016)
 K. Yokoi, T. Endo, A. Yamamoto, et al., "Uncertainty Quantification of Activation Due to Cross Section Data in Neutron Shielding Calculation," Proceedings of ICAPP2017, Fukui/Kyoto, Japan, Apr.24-28, 2017.

40. Shinji Sugaya, Tomohiro Endo, Akio Yamamoto ," Inverse Estimation of Unknown Radioactive Source using Detection Probability and Adjoint Calculation", Proc. M&C2017, Apr.16-20, 2017, Jeju, Korea (2017)

41. DOORS3.2a: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, CCC-650

42. JENDL-4.0u, http://wwwndc.jaea.go.jp/jendl/j40/update/, JAEA (2017/12/29).

43.Q) JENDL-4.0 で共分散が与えられている核種は何か?,

http://wwwndc.jaea.go.jp/FAQ/FAQ/a207.html, JAEA 核データ研究グループ (2017/12/29).

44. Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39 Ver.6.1, ORNL (2011).

45. 横井公洋, "中性子遮蔽計算における断面積起因の放射化量不確かさ定量評価", 名古屋 大学卒業論文,(2016)

Appendix.A 離散座標法を用いた高速な中性子輸送計算コード

A.1 ANISN コードにおける計算時間に関する問題点

本 APPENDIX では、4 章の解析において使用した離散座標法を用いた高速な中性子輸送 計算コード(以下、名大開発 S_Nコード)について概要を解説する。まず、本節では、離散座標 法を用いた 1 次元中性子輸送計算コードである ANISN コード[41]を使用した際に直面した 収束性に関する問題点について述べる。

4.2.1 節で述べた 1 次元円柱体系において、ANISN コード[41]を用いて中性子遮へい計算 を実施したところ、構造材中の中性子束として物理的に適切でない結果が確認された。 ANISN コードを用いた中性子遮へい計算の計算条件については、4.2.1.節で述べた条件と基 本的に同様であるが、一部異なる部分があるので表 A.1 に記載する。また、図 A.1 に評価さ れた構造材中のエネルギー積分した中性子束の分布を示す。

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
thermal cutoff energy	26 群(1eV)
内部反復収束判定基準(XLAL)	1.00E-04
外部反復収束判定基準(EPS)	1.00E-05
加速法	CMR
初期也快了主	空間・エネルギーに依らず
初期中任于来	一様(値としては 1.0)

表 A.1 中性子遮へい計算の計算条件(ANISN)

図 A.1 1 次元円柱体系における構造材中のエネルギー積分した中性子束の分布

通常、遮蔽体内部を中性子が通過するにつれて中性子束の絶対値は減少するはずであるが、

図 A.1 では、中性子束が上昇している領域があり物理的に適切でない計算結果が得られて いることを示している。

原因について調査した結果、ANISN の外部反復計算の収束判定に問題があると考察した。一般的な中性子輸送計算コードの場合、固定源計算の外部反復計算の収束判定は式(A.1.1)に基づいて判断される。

$$\left|\frac{\phi_{i,g}^{l+1} - \phi_{i,g}^{l}}{\phi_{i,g}^{l+1}}\right| < \varepsilon \tag{A.1.1}$$

ここで、式中の変数は以下のものを示す。

l:外部反復計算の回数、*i*:空間メッシュ番号、*g*:エネルギー群、φ:中性子束(スカラーフラックス、全中性子束)、ε:収束判定基準

一方、ANISN コードは古い計算コードであり、おそらく計算に要するメモリを節約するため、式(A.1.2)~(A.1.4)のような中性子源積分値に対する収束判定基準が用いられている[41]。

$$\left|\frac{S_{\text{total source}}^{l+1} - S_{\text{total source}}^{l}}{S_{\text{total source}}^{l+1}}\right| < \varepsilon \tag{A.1.2}$$

$$\frac{S_{\text{total scatter}}^{l+1} - S_{\text{total scatter}}^{l}}{S_{\text{total scatter}}^{l+1}} \Big| < \varepsilon \tag{A.1.3}$$

$$\left|\frac{S_{\rm up\,scatter}^{l+1} - S_{\rm up\,scatter}^{l}}{S_{\rm up\,scatter}^{l+1}}\right| < \varepsilon \tag{A.1.4}$$

ここで、式中の変数は以下のものを示す。

S:全エネルギー・全メッシュで積分された中性子源。下添字 total source、total scatter、up scatter は全中性子源、全散乱中性子源、上方散乱中性子源の成分である。

ANISN コードでは、式(A.1.2)~(A.1.4)の左辺で示された反復計算1回毎の中性子源の相対変 化量が、入力パラメータとして与える外部反復収束判定基準 EPS より小さいかどうかで収 束判定を行っている[41]。total source、total scatter、up scatter 成分がすべて収束条件を満た した場合、外部反復計算が終了となる。しかし、今回のように原子炉建屋全体を模擬した非 常に大きな計算体系では、深層部における反応率の値は非常に小さくなる。従って、全空間 メッシュで中性子源を積分した際に、深層部の反応率は全体に対してほとんど寄与しない 状況となる。そのため、深層部の中性子束の値が十分収束しきっていないにも関わらず、式 (A.1.2)~(A.1.4)で示した収束判定条件を満足してしまい、疑似収束に陥ってしまう可能性が ある。EPS を極めて小さくしたとしても、ANISN は浮動小数点数演算において単精度浮動 小数点数を用いているため中性子源の変化量が小さいと式(A.1.2)~(A.1.4)の左辺が0と評価 されてしまい外部反復が終了してしまう。

当初、沸騰水型原子炉を模擬した1次元円柱体系の計算では、中性子束の初期値として 全ての空間メッシュ・全中性子エネルギーに対して一様に1.0の値を初期値として与えて 計算を実施していた。この場合、深層部の中性子束の真値は極めてゼロに近いにも関わら ず、中性子束の初期値として大きすぎる値を与えてしまうこととなり、散乱中性子源の初 期値も真値とは大きく異なった条件となっている。反復を繰り返すにつれて深層部の中性 子束の値は徐々に減少していくことになるが、ANISN コードで実装された CMR 加速法は それほど効率の良い手法ではないため、深層部の中性子束が十分収束しきっていないにも 関わらず、式(A.1.2)~(A.1.4)の収束判定基準を満足してしまい疑似収束に陥ってしまった と考えられる。

この収束性に関する問題は、収束条件や初期中性子源分布を工夫することにより改善す ることは可能であるが、計算コストや計算精度の観点により、ANISN を使い続けることは 望ましくないと判断した。

A.2 PARTISN コードに関する問題点

本節では、同じく離散座標法を用いた中性子輸送計算コードである PARTISN[22]を使用 した際に直面した収束性に関する問題点について述べる。

A.1 節で述べたように ANISN コードには収束性に問題があることが判明したため、拡散 合成加速法が実装されている PARTISN コード[22]で代替可能かどうかについて、検討を実 施した。しかし、4.2.1 節で述べた計算条件(1 次元円柱体系)と同様の計算条件において、 PARTISN コードにより構造材中の中性子束分布を評価したところ、数値計算的に不安定な 計算条件であるためか、気体領域において中性子束分布に物理的に適切でない挙動が発生 することが判明した。この場合、拡散合成加速法の機能をオフ(SRCACC=NO)として、加速 法を適用しなければ、正しい収束解が得られることは確認できたが、ANISN コードと同様 に多くの計算時間を要することとなる。以上で述べた問題点を回避する方法としては、以下 のような手順が考えられる。

- 収束判定基準を 10⁻³ と緩く設定した上で、拡散合成加速法の機能をオフ (SRCACC=NO)として、中性子束の収束解を求める。得られた中性子束(角度中性子 束に関する高次モーメント量)をバイナリファイルに出力する(RMFLUX=1)。
- ② 拡散合成加速法の機能をオン(SRCACC=DSA)として拡散合成加速法を適用した上で、中性子東バイナリファイルを読み込み、再度 PARTISN コードの計算を実施し収束解を得る。得られた中性子束については、①と同様にバイナリファイルに出力する。
- ③ 収束条件を段階的に厳しくし(例えば 10⁻³→10⁻⁴)、①と②の手順を繰り返す。目標と する収束条件(例えば 10⁻⁶)を満足する収束解が得られたら一連の計算を終了する。

以上のような段階的な計算手順でPARTISN コードにより尤もらしい中性子束の収束解が得られることについては確認することができた。しかし、計算時間の観点に加え、収束解を得るまでの計算手順が複雑で不確かさ評価手順が煩雑なものとなると考えられたため、代替コードとしての PARTISN コードの使用については断念することとした。

A.3 離散座標法を用いた高速な中性子輸送計算コード

本節では、以上の収束性に関する問題と中性子遮へい計算に掛かる計算時間の課題を解決するべく名古屋大学で開発された、離散座標法を用いた高速な中性子輸送計算コード"名大開発 S_Nコード"の概要について述べる。

名大開発 S_Nコードは、名古屋大学山本章夫研究室の遠藤知弘助教により開発された離散 座標法を用いた高速な中性子輸送計算コードである。本計算コードは、1 次元円柱体系及び 2 次元 r-z 体系における中性子遮へい計算に対応しており、随伴計算に基づく(1 次)摂動論及 び直接法により感度係数を評価することも可能である。本計算コードの主な特徴は、以下の 通りである。

- (ア)transport sweep の加速のため、詳細メッシュ単位の粗メッシュ拡散加速法を適用。
- (イ)OpenMP により transport sweep を中性子飛行方向で並列化。
- (ウ) 差分近似としては、ステップ差分、ダイヤモンド差分、重み付き差分、(+zerofixed up 法)の内から選択可能。角度分点セットは、Triangular Chebychev-Legendre 分点となっている(Gauss-Legendre と Chebyshev の Triangular quadrature)。
- (エ)簡略化のため、核分裂反応νΣfは陽に取り扱わない。すなわち、核分裂反応による二次中性子の発生は考慮せず、外部中性子源として与えた固定源計算で代用する。

本節では、主に(イ)の概要について紹介する(拡散加速法については、2.4.3 節を参照)。本 コードは、プログラミング言語として C++ (開発環境としては Microsoft Visual Studio Professional 2013)を活用している。Visual Studioの場合、比較的容易に OpenMP による並列 計算が実施可能となる。

OpenMP では for 文のような繰り返し処理を、自動時に複数のスレッドに分割して並列処 理することができる。例えば、 $\sum_{i=1}^{1000} i^2$ の和を計算することを考えると、以下のような手順 により並列計算を行うことができる。

- ① OpenMP による並列計算しスレッド数を設定する。例えば、今回の例では4 スレッドに分割して和を計算することとする。
- ② 4 つのスレッドに対して(1) $\sum_{i=1}^{250} i^2$ 、(2) $\sum_{i=251}^{500} i^2$ 、(3) $\sum_{i=501}^{750} i^2$ 、(4) $\sum_{i=751}^{1000} i^2$ 、と和の計算処理を分配する。
- ③ 全てのスレッドについて②の計算が終了するまで待つ。
- ④ 全てのスレッドの計算が終了した後に、4つの和を合計する。

上の例は非常に簡単な例ではあるが、仮に②の和の計算が全計算時間のボトルネックになっていた場合、複数 CPU(複数コア含む)を持った計算機を利用して和を 4 つに分割して 並列計算すれば、非常に容易に計算の高速化を図ることが可能となる。

本計算コードに実装されている1次元円柱体系のS_N輸送計算に対するOpenMPの適用方法について考える。まず、中性子エネルギーを多群化した1次元円柱体系における中性子輸送方程式を式(A.3.1)に示す。

$$\frac{\mu}{r}\frac{\partial(r\psi_g)}{\partial r} - \frac{1}{r}\frac{\partial(\eta\psi_g)}{\partial\varphi} + \Sigma_{t,g}\psi_g(r,\vec{\Omega})$$

$$= \mu\frac{\partial\psi_g}{\partial r} + \frac{\mu}{r}\psi_g - \frac{\eta}{r}\frac{\partial\psi_g}{\partial\varphi} - \frac{1}{r}\psi_g\frac{\partial\eta}{\partial\varphi} + \Sigma_{t,g}\psi_g(r,\vec{\Omega})$$

$$= \mu\frac{\partial\psi_g}{\partial r} - \frac{\eta}{r}\frac{\partial\psi_g}{\partial\varphi} + \frac{\sin\theta\cos\varphi}{r}\psi_g - \frac{\sin\theta\cos\varphi}{r}\psi_g \qquad (A.3.1)$$

$$+ \Sigma_{t,g}\psi_g(r,\vec{\Omega})$$

$$= \mu\frac{\partial\psi_g}{\partial r} - \frac{\eta}{r}\frac{\partial\psi_g}{\partial\varphi} + \Sigma_{t,g}\psi_g(r,\vec{\Omega}) = q_g(r,\vec{\Omega})$$

ここで、式中の変数は以下のものを示す。各変数の詳細については、2.4 節を参照のこと。 r:中心からの距離、g:エネルギー群、

 $\vec{\Omega}(\mu,\eta,\xi) = (\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$:飛行方向、 θ :極角、 φ :方位角、 $\psi_q(r,\vec{\Omega})$:角度中性子束、 $\Sigma_{t,q}$:巨視的全断面積、 $q_q(r,\vec{\Omega})$:中性子源

ここで、離散化されたある方向を $\vec{\Omega}_j$ とすると、1次元円柱体系の離散座標方程式は式 (A.3.2),(A.3.3)のようになる(下添字 j は方向 $\vec{\Omega}_j$ に対応)。

$$\mu_j \frac{\partial \psi_{g,j}}{\partial r} + \Sigma_{t,g} \psi_{g,j}(r) = q_{g,j}(r), \quad \text{if } \eta_j = 0, \text{ or } \varphi_j = -\pi$$
(A.3.2)

$$\frac{\mu_{j}}{r}\frac{\partial(r\psi_{g,j})}{\partial r} - \frac{1}{r}\frac{\partial(\eta_{m}\psi_{g,j})}{\partial\varphi} + \Sigma_{t,g}\psi_{g,j}(r) = q_{g,j}(r), \quad \text{otherwise}$$
(A.3.3)

式(A.3.3)は、*φ*に対する微分が含まれているため、差分化方程式においては*φ*方向の流入、 流出角度中性子束を考える必要がある。

1 次元円柱体系の S_N輸送計算に OpenMP を適用する場合、「各中性子飛行方向に沿って 流出角度中性子束の値を更新する」という処理を、OpenMP により並列化することができる。 ただし、上述したように、1 次元円柱体系の差分化方程式では、 φ 方向の流入、流出角度中 性子束を考える必要があるため、trasnportsweep では、方位角 φ 方向について順に角度中性子 束を更新する必要があり(2.4.3 節の図 2.4.5 において、x-y 軸を r- φ 軸と置き換えて考えると わかりやすい)、これを並列化しても計算効率を向上させることはできない。一方、極角方 向 θ については計算順序を固定する必要はなく、どの方向余弦 $\xi_{j_{\theta}}$ からでも transport sweep を 開始することができるため、OpenMP による並列化処理が効率的に機能することが期待でき る。

ここで、本コードで適用されている並列化効率を向上させるための各スレッドへの transportsweep の割り当てについて解説する。並列化効率を向上させるためには、律速が生 じないように各スレッドへできるだけ同じように、task を分担することが必要となる。例え ば、Triangular Chebychev-Legendre 型の S16 分点の場合には、極角方向を 8 分割することに なるため、仮にスレッド数を 4 つとして OpenMP 並列化を行った場合には、for 文で極角方 向の処理を繰り返す際のスレッドへの分配方法が並列化効率に影響を及ぼすこととなる。 本計算コードでは、各スレッドに対する極角方向の割り当てとして、OpenMP の schedule 関 数を利用して、以下で示すような動的な割り当て方が採用されている。

```
#pragma omp for schedule(dynamic,1)
```

for (int m = Nxi - 1; m >= 0; m--){

...

以上のプログラム例の場合、Triangular Chebychev-Legendre 型の S16 分点に対して OpenMP を用いて 4 つのスレッドに対して transport sweep の並列化を行ったとすると、以下のように 分配されることになる。

- スレッド1に対して方向余弦ξ_{iθ}の値が最もゼロに近い transport sweep(方位角数 16) を分配し、ξの大きさが昇順となる順番で、スレッド2に対して方位角度数 14、ス レッド3に対して方位角度数 12、スレッド4に対して方位角度数 10の transport sweep を分配する。
- ② ①のうち、最も速く計算を終えたスレッドに対して、方位角数 8 の transport sweep が分配される。
- ③ 同様に、方位角数 6, 4, 2 の transport sweep についても、その時点でジョブを終えて 空き状態にあるスレッドに対して分配されることになる。

transport sweep 内の処理として、角度中性子束が負になった場合には追加の処理が発生する こともあり、流入角度中性子束や中性子源の状況によって transport sweep の計算負荷が動的 に変化し得る。上述で示したプログラム例のように、OpenMP による並列化を動的な割り当 てとすることで、計算時の状況に応じた形で並列化できるようになっている。加えて、計算 コストが最も高い transport sweep から順に分配していくことで、最後に計算を処理すること になるスレッドの task を相対的に小さくし、待ち時間が短くなるなるような工夫が凝らさ れている。

Appendix. B SCALE の断面積共分散データを用いたランダム

サンプリング

B.1 中性子遮蔽計算の不確かさ評価における JENDL-4.0 共分散データの課題

本章では、SCALE[38,44]の断面積共分散データを用いたランダムサンプリングの実施に ついて述べる。本節では、まず、中性子遮蔽計算の不確かさ評価における JENDL-4.0 共分 散データの課題について述べる。

JENDL-4.0 では、以下で示す 99 核種について共分散データ(核反応断面積の誤差や相関) が整理されている(なお、²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb の共分散データについては JENDL-4.0u1 に おいて新たに追加されている)[42,43]。

¹⁰B, ¹¹B, ¹⁴N, ¹⁵N, ¹⁶O, ²³Na, ⁴⁸Ti, ⁵²Cr, ⁵³Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁹⁰Zr,

²⁰⁹Bi, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb,

²²⁵Ac, ²²⁶Ac, ²²⁷Ac, ²²⁷Th, ²²⁸Th, ²²⁹Th, ²³⁰Th, ²³¹Th, ²³²Th, ²³³Th, ²³⁴Th, ²²⁹Pa, ²³⁰Pa, ²³¹Pa, ²³²Pa, ²³³Pa, ²³¹Pa, ²³²U, ²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁷U, ²³⁸U, ²³⁴Np, ²³⁵Np, ²³⁶Np, ²³⁷Np, ²³⁸Np, ²³⁹Np, ²³⁶Pu, ²³⁷Pu, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴⁴Pu, ²⁴⁶Pu, ²⁴⁰Am, ²⁴¹Am, ²⁴²Am, ^{242m}Am, ²⁴³Am, ²⁴⁴Am, ^{244m}Am, ²⁴⁰Cm, ²⁴¹Cm, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm, ²⁴⁶Cm, ²⁴⁷Cm, ²⁴⁸Cm, ²⁴⁹Cm, ²⁵⁰Cm, ²⁴⁵Bk, ²⁴⁶Bk, ²⁴⁷Bk, ²⁴⁸Bk, ²⁴⁹Bk, ²⁵⁰Bk, ²⁴⁶Cf, ²⁴⁸Cf, ²⁴⁹Cf, ²⁵⁰Cf, ²⁵¹Cf, ²⁵²Cf, ²⁵³Cf, ²⁵⁴Cf, ²⁵¹Es, ²⁵²Es, ²⁵⁵Es, ²⁵⁵Es,

上記から分かるように、JENDL-4.0 では核計算(中性子増倍率)の不確かさ評価において重要 となる MA の共分散データが主に整備されている。しかし、中性子遮蔽計算の不確かさ評 価で必要となる¹H, Fe といった軽核種の共分散データは十分には整備されていない。中性 子遮へい計算はJENDL-4.0に基づくMATXSLIB-J40ライブラリを用いて実施しているため、 本来ならば JENDL-4.0 の共分散データを用いて不確かさ評価を実施すべきだが、上記の理 由により、本研究においては、構造材核種の共分散データが豊富な SCALE コードシステム の共分散データを用いて放射化量の不確かさを"概算"することとした。 B.2 SCALE の断面積共分散データを用いた断面積摂動因子のランダムサンプリングツ ールの概要

本節では、本研究において使用した SCALE[38,44]の断面積共分散データを用いた断面積 摂動因子のランダムサンプリングツールの概要について述べる。ランダムサンプリングの 原理や断面積摂動因子の拡張(例: 56 群→199 群)の詳細等については、3.2.2 節及び 4.2.1 節 を参照のこと。

本コードは、名古屋大学山本章夫研究室の遠藤知弘助教により開発された断面積摂動因 子のランダムサンプリングツールである(プログラミング言語は、python)。断面積共分散デ ータとしては、SCALE6 コードシステムにおける 44groupcov ライブラリ、SCALE6.2 コード システムにおける 56groupcov,256groupcov ライブラリを扱うことができる (scale.rev05.44groupcov,scale.rev08.56groupcov7.1, scale.rev08.252groupcov7.1ファイル)[38,44]。 以下で各々のライブラリを用いた場合の処理の概要について述べる。

① scale.rev05.44groupcov ライブラリを用いたランダムサンプリング

SCALE6 の共分散データ 44groupcov[44]は、化学形態の違いも考慮して、全部で 401 物質 について共分散データが整備されている。また、重核種の核分裂断面積については、一部核 種間において核種間の共分散も含まれている(表 B.1)[44]。なお、44groupcov の共分散データ については、中性子エネルギーが 44 群構造である。

Nuclide 1	Reaction 1	Nuclide 2	Reaction 2
²⁴⁰ Pu	Fission	²³⁹ Pu	Fission
²⁴⁰ Pu	Fission	²³³ U	Fission
²⁴⁰ Pu	Fission	²³⁸ U	Fission
²⁴¹ Pu	Fission	²³⁹ Pu	Fission
²⁴¹ Pu	Fission	²⁴⁰ Pu	Fission
²⁴¹ Pu	Fission	²³³ U	Fission
²⁴¹ Pu	Fission	²³⁵ U	Fission
²⁴¹ Pu	Fission	²³⁸ U	Fission
²³⁵ U	Fission	²⁴⁰ Pu	Fission

表 B.1 44groupcov における核種間の共分散[44]

scale.rev05.44groupcov はバイナリ形式のデータであるため、目視で確認するには SCALE6.1/COGNAC モジュールを利用し、scale.rev05.44groupcov をテキスト形式のファイル に変換する。例えば、SCALE 入力ファイルにおいて shell コマンドを利用することで以下の ように COGNAC モジュールを使用することができる。

=shell

In -s \$RTNDIR/scale.rev05.44groupcov ft77f001

```
end
=cognac
in=77 out=12 new=yes binary to bcd
end
=shell
mv ft12f001 $RTNDIR/scale.rev05.44groupcov.ascii
end
```

本コードでは、こうしてテキスト形式に変換された共分散データを入力ファイルとして、 共分散データを読み込む。SCALE6 で利用されている共分散データのフォーマットは COVERX 形式と呼ばれる書式で、各核種・各核反応の共分散データの値が収録されている。 COVERX 形式の詳細については SCALE コードマニュアル[38]の Appendix C.6.5.A..に記載 されており、これに従って各核種・各核反応の共分散行列Cを読み込むことができれば、 3.2.2.2 節で既に述べたようにランダムサンプリングを実施できる。なお、収録されている共 分散データの値は、核反応断面積の"相対"共分散である。

ー例として、⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe, ¹H, ¹⁶Oの捕獲反応と弾性散乱について、200 ケースの ランダムサンプリングを実施した結果を図 5.1 に示す。図 5.1 において、断面積 ID は便宜 上以下のように定義している。

1~88 : ⁵⁴Feの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)
89~176 : ⁵⁶Feの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)
177~176 : ⁵⁷Feの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)
265~352 : ⁵⁸Feの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)
353~440 : ¹Hの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)
441~528 : ¹⁶Oの捕獲反応(1~44 群)、弾性散乱反応(1~44 群)

図 5.1 より、200 ケースのランダムサンプリングによって評価された断面積の相対標準偏差 および反応間の相関係数は、元データをよく再現できていることから、本コードの妥当性が 確認できる。

118

図 B.1 断面積摂動因子ランダムサンプリングツールの実施結果

② scale.rev08.56groupcov7.1, scale.rev08.252groupcov7.1 ライブラリを用いたランダムサン プリング

最新の SCALE6.2.1 コードシステムでは、不確かさ評価で使用する断面積共分散データフ アイルも更新されており、中性子エネルギー群構造が 56 群または 252 群構造に変更されて いる(scale.rev08.56groupcov7.1 および scale.rev08.252groupcov7.1)[38]。また、共分散データが 整備された物質数も 456 物質と増加している。さらに、各核種・各反応間の共分散について も表 B.2 に示すように、重核種の核分裂反応間だけではなく、⁶Li の(n,t)反応や¹⁹⁷Au 捕獲反 応との共分散が新たに追加されている[38]。

Nuclide 1	Reaction 1	Nuclide 2	Reaction 2
²³⁹ Pu	Fission	⁶ Li	Triton production
²³⁹ Pu	Fission	¹⁹⁷ Au	Capture
²³⁹ Pu	Fission	²³⁵ U	Fission
²³⁹ Pu	Fission	²³⁸ U	Fission
²³⁵ U	Fission	¹⁹⁷ Au	Capture
²³⁵ U	Fission	⁶ Li	Triton production
²³⁸ U	Capture	¹⁹⁷ Au	Capture
²³⁸ U	Capture	²³⁵ U	Fission

表 B.2 SCALE6.2 共分散データにおける各核種・各反応間の共分散[38]

scale.rev05.44groupcov の場合には、COGNAC モジュールを使用することで、ファイル形 式をバイナリ形式からテキスト形式に変換することができる。しかし、最新版の SCALE6.2 コードシステムでは SCALE6.2 入力ファイル中から COGNAC モジュールを実行することが できないため、本コードでは、Python の struct.unpack 関数を利用してバイナリファイルを直 接読み込んでいる。なお、SCALE6.2 に収録された共分散データのバイナリファイルを読み 込むにあたって、以下の点が注意点となっている。

① scale.rev05.44groupcov の場合、big-endian 方式で読み込む。

 一方、scale.rev08.56groupcov7.1 および scale.rev08.252groupcov7.1 の場合、little-endian 方式であり、バイナリファイル中のバイトオーダーが逆向きである。

バイナリファイル中において各ブロックは

(ブロックiの全 byte 数 N_{byte} [整数])(N_{byte} 分のデータ列[文字または整数または実数])(ブロックiの全 byte 数 N_{byte} [整数])

といった形で配列データが格納されている。endian に注意した上で、整数(integer)でN_{byte}の 値をまず読み込み、それに続くN_{byte}分のデータ列を coverx ファイル形式の書式に従って文 字,整数,実数配列の形に変換し、断面積摂動因子のランダムサンプリングに必要となる共 分散行列Cの値を読み込む。共分散行列Cの値を読み込むことができれば、以降の処理につ いては、scale.rev05.44groupcov ライブラリの場合と同様である。

公刊論文リスト

- K. Yokoi, T. Endo, A. Yamamoto, R. Mizuno, Y. Kimura, "Uncertainty Quantification of Activation Due to Cross Section Data in Neutron Shielding Calculation," *Trans. Am. Nucl. Soc.*, 115, pp.1085-1087, (2016).
- K. Yokoi, T. Endo, A. Yamamoto, R. Mizuno, Y. Kimura., "Uncertainty Quantification of Activation Due to Cross Section Data in Neutron Shielding Calculation," *Proc. ICAPP2017*, Fukui/Kyoto, Japan, Apr.24-28, 2017(2017).
- 3. 林幸司, 横井公洋, 遠藤知弘, 山本章夫, 水野良治, 木村佳央, "Reduced Order Modeling を用いた原子炉構造材放射化量の不確かさ評価,"日本原子力学会 2018 春の年会, 大阪 大学, 3 月 26-28 日, 2018.(submitted).
- K. Yokoi, T. Endo, A. Yamamoto, Koji Hayashi, R. Mizuno, Y. Kimura, "DEVELOPMENT OF THE UNCERTAINTY QUANTIFICATION METHOD OF ACTIVATION IN REACTOR STRUCTURES USING REDUCED-ORDER MODELING," *Proc. PHYSOR2018*, Cancun, Mexico, Apr.22-26, 2018 (2018).(submitted).